SK attention
时间: 2024-01-14 15:03:20 浏览: 126
SK Attention是一种注意力机制,它在图像处理中被广泛应用。SK Attention借鉴了SENet的思想,通过动态计算每个卷积核得到通道的权重,然后动态地将各个卷积核的结果进行融合。这种注意力机制可以让网络更加关注待检测目标,从而提高检测效果。
以下是SK Attention的示例代码:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
class SKConv(nn.Module):
def __init__(self, in_channels, out_channels, stride=1, M=2, r=16, L=32):
super(SKConv, self).__init__()
d = max(in_channels // r, L)
self.M = M
self.out_channels = out_channels
self.conv = nn.ModuleList()
for i in range(M):
self.conv.append(nn.Sequential(
nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1 + i, dilation=1 + i, bias=False),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True)
))
self.global_pool = nn.AdaptiveAvgPool2d(1)
self.fc = nn.Sequential(
nn.Linear(out_channels, d, bias=False),
nn.ReLU(inplace=True),
nn.Linear(d, out_channels * M, bias=False)
)
self.softmax = nn.Softmax(dim=1)
def forward(self, x):
batch_size = x.size(0)
output = []
for i, conv in enumerate(self.conv):
output.append(conv(x))
U = sum(output)
s = self.global_pool(U).view(batch_size, -1)
z = self.fc(s).view(batch_size, self.M, self.out_channels)
a_b = self.softmax(z)
a_b = list(a_b.chunk(self.M, dim=1))
V = sum([a * b for a, b in zip(output, a_b)])
return V
# 使用SK Attention
sk_conv = SKConv(in_channels=64, out_channels=128)
input = torch.randn(1, 64, 32, 32)
output = sk_conv(input)
print(output.shape) # 输出:torch.Size([1, 128, 32, 32])
```
阅读全文