基于Transformer的图像去噪算法
时间: 2024-01-10 09:20:58 浏览: 135
基于Transformer的图像去噪算法是使用Transformer模型来处理图像去噪任务。下面是一个基于Transformer的图像去噪算法的示例:
```python
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision.transforms as transforms
from torch.utils.data import DataLoader
from torchvision.datasets import CIFAR10
from torchsummary import summary
# 定义Transformer模型
class Transformer(nn.Module):
def __init__(self, input_dim, hidden_dim, num_heads, num_layers):
super(Transformer, self).__init__()
self.encoder = nn.TransformerEncoder(
nn.TransformerEncoderLayer(input_dim, num_heads, hidden_dim),
num_layers
)
self.decoder = nn.Linear(input_dim, input_dim)
def forward(self, x):
x = self.encoder(x)
x = self.decoder(x)
return x
# 加载CIFAR-10数据集
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
train_dataset = CIFAR10(root='./data', train=True, download=True, transform=transform)
train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True)
# 初始化模型和优化器
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = Transformer(input_dim=3, hidden_dim=256, num_heads=8, num_layers=6).to(device)
optimizer = optim.Adam(model.parameters(), lr=0.001)
criterion = nn.MSELoss()
# 训练模型
num_epochs = 10
for epoch in range(num_epochs):
for batch_idx, (data, _) in enumerate(train_loader):
data = data.to(device)
noisy_data = data + torch.randn_like(data) * 0.1 # 添加高斯噪声
optimizer.zero_grad()
output = model(noisy_data)
loss = criterion(output, data)
loss.backward()
optimizer.step()
print('Epoch [{}/{}], Loss: {:.4f}'.format(epoch+1, num_epochs, loss.item()))
# 使用模型去噪图像
test_dataset = CIFAR10(root='./data', train=False, download=True, transform=transform)
test_loader = DataLoader(test_dataset, batch_size=1, shuffle=False)
model.eval()
with torch.no_grad():
for data, _ in test_loader:
data = data.to(device)
noisy_data = data + torch.randn_like(data) * 0.1 # 添加高斯噪声
denoised_data = model(noisy_data)
# 显示去噪前后的图像
# ...
# 打印模型结构
summary(model, (3, 32, 32))
```
这个示例中,我们使用了一个基于Transformer的模型来进行图像去噪。首先,我们定义了一个Transformer类,其中包含了一个TransformerEncoder和一个线性层作为解码器。然后,我们加载了CIFAR-10数据集,并初始化了模型、优化器和损失函数。接下来,我们训练模型,通过将噪声图像作为输入,将去噪后的图像作为输出,并计算损失。最后,我们使用训练好的模型对测试集中的图像进行去噪,并显示去噪前后的图像。
阅读全文