求解fsp的遗传算法python代码
时间: 2024-06-23 11:02:57 浏览: 115
FSP(Flexible Single Parent)是遗传算法(Genetic Algorithm, GA)的一种变体,它在选择操作中采用了一种灵活的方式,即单亲选择,而不是传统的双亲交叉。在Python中实现FSP遗传算法,你可以使用Scikit-Optimize库或者自定义实现基本的GA流程,包括编码、初始化、选择、交叉、变异和适应度评估等步骤。
以下是一个简单的FSP遗传算法的Python代码示例:
```python
import random
from sklearn.metrics import accuracy_score
from sklearn.ensemble import RandomForestClassifier
# 假设你有一个分类任务,特征集和目标变量
X, y = load_data()
num_features = X.shape
# 1. 初始化
def init_population(size, num_features):
population = [random.random_sample(num_features) for _ in range(size)]
return population
# 2. 编码
def encode_solution(solution):
# 这里假设solution是一个特征向量,可能需要转换为模型的输入格式
return solution
# 3. FSP选择
def fsp_selection(population, fitness):
selected = [population] # 从第一个个体开始
for i in range(1, len(population)):
best_idx = max(range(i), key=lambda j: fitness[j])
selected.append(population[best_idx])
return selected
# 4. 交叉和变异
def crossover_and_mutate(selected, mutation_rate):
offspring = []
for parent1, parent2 in zip(selected[::2], selected[1::2]):
child = crossover(parent1, parent2)
child = mutate(child, mutation_rate)
offspring.append(child)
return offspring
# 5. 适应度评估
def evaluate_fitness(solution, X, y):
model = RandomForestClassifier() # 使用随机森林作为模型
model.fit(encode_solution(solution), y)
predictions = model.predict(X)
return accuracy_score(y, predictions)
# 示例执行过程
pop_size = 100
num_generations = 100
mutation_rate = 0.1
population = init_population(pop_size, num_features)
fitness = [evaluate_fitness(sol, X, y) for sol in population]
for _ in range(num_generations):
selected = fsp_selection(population, fitness)
offspring = crossover_and_mutate(selected, mutation_rate)
population = selected + offspring
# 更新适应度
fitness = [evaluate_fitness(sol, X, y) for sol in population]
# 最佳解决方案
best_solution = population[fitness.index(max(fitness))]
```
阅读全文