D:\Anaconda\lib\site-packages\openpyxl\worksheet\_reader.py:300:

时间: 2023-11-12 13:05:58 浏览: 48
根据提供的引用内容,这是一个警告信息,警告信息的内容是“未知扩展名不受支持,将被删除”。这个警告信息出现在openpyxl模块的worksheet\_reader.py文件的第300行。这个警告信息的意思是openpyxl模块无法识别某个扩展名,因此会将其删除。这个警告信息并不会影响代码的运行,只是提醒用户某些扩展名可能会被删除。
相关问题

python中报Usage:C:\anaconda\lib\site-packages\ipykernel_launcher.py camera_id face_num_max path_name

这个错误提示是一个使用指令时的错误提示,其中“Usage”表示使用方法,后面的“C:\anaconda\lib\site-packages\ipykernel_launcher.py camera_id face_num_max path_name”是命令的具体参数。这个错误提示的意思是你在使用某个命令时,没有按照正确的格式输入参数。你需要检查一下你输入的命令是否符合要求,并且保证每个参数都正确填写。

Usage:C:\anaconda\lib\site-packages\ipykernel_launcher.py camera_id face_num_max path_name

I'm sorry, but I am an AI language model and I don't have access to your local files or camera. Can you provide more context about what you are trying to achieve with this command?

相关推荐

回答: 根据您提供的引用内容,问题出现在导入typing_extensions模块时无法找到'deprecated'的错误。解决这个问题的方法是安装typing_extensions模块。您可以使用以下命令安装typing_extensions模块:pip install typing_extensions。\[1\]另外,还有一个报错信息是在maxvit.py文件中从typing中导入了OrderedDict,但是该模块中并没有这个。这可能是由于版本不兼容导致的。您可以尝试更新相关的库或查找其他解决方案来解决这个问题。\[2\]另外,还有一个报错信息是在导入tensorflow_datasets模块时出现了ModuleNotFoundError。这意味着您的环境中没有安装tensorflow_datasets模块。您可以使用以下命令安装tensorflow_datasets模块:pip install tensorflow_datasets。\[3\]这样应该可以解决您遇到的问题。 #### 引用[.reference_title] - *1* *2* [ImportError: cannot import name ‘OrderedDict‘ from ‘typing‘的解决办法](https://blog.csdn.net/qq_41879696/article/details/129631956)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control,239^v3^insert_chatgpt"}} ] [.reference_item] - *3* [自然语言处理NLP星空智能对话机器人系列:理解语言的 Transformer 模型-子词分词器](https://blog.csdn.net/duan_zhihua/article/details/121479623)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]

请解释一下这段报错 Traceback (most recent call last): File "D:/yolov7-lpr/yolov7_plate-master/plate_recognition/lprnet_plate_recognition.py", line 41, in <module> result = lprnet_plate_recognition("D:\yolov7-lpr\yolov7_plate-master\imgs\police.jpg", "D:\yolov7-lpr\yolov7_plate-master\weights\Final_LPRNet_model.pth") File "D:/yolov7-lpr/yolov7_plate-master/plate_recognition/lprnet_plate_recognition.py", line 9, in lprnet_plate_recognition model = torch.load(model_path) File "D:\Anaconda\lib\site-packages\torch\serialization.py", line 608, in load return _legacy_load(opened_file, map_location, pickle_module, **pickle_load_args) File "D:\Anaconda\lib\site-packages\torch\serialization.py", line 787, in _legacy_load result = unpickler.load() File "D:\Anaconda\lib\site-packages\torch\serialization.py", line 743, in persistent_load deserialized_objects[root_key] = restore_location(obj, location) File "D:\Anaconda\lib\site-packages\torch\serialization.py", line 175, in default_restore_location result = fn(storage, location) File "D:\Anaconda\lib\site-packages\torch\serialization.py", line 151, in _cuda_deserialize device = validate_cuda_device(location) File "D:\Anaconda\lib\site-packages\torch\serialization.py", line 135, in validate_cuda_device raise RuntimeError('Attempting to deserialize object on a CUDA ' RuntimeError: Attempting to deserialize object on a CUDA device but torch.cuda.is_available() is False. If you are running on a CPU-only machine, please use torch.load with map_location=torch.device('cpu') to map your storages to the CPU.

解决:Traceback (most recent call last): File "E:\_software\anaconda\Scripts\conda-script.py", line 11, in <module> from conda.cli import main File "E:\_software\anaconda\lib\site-packages\conda\__init__.py", line 9, in <module> from .__version__ import __version__ File "E:\_software\anaconda\lib\site-packages\conda\__version__.py", line 3, in <module> from .auxlib.packaging import get_version File "E:\_software\anaconda\lib\site-packages\conda\auxlib\packaging.py", line 68, in <module> from distutils.command.build_py import build_py File "<frozen importlib._bootstrap>", line 1027, in _find_and_load File "<frozen importlib._bootstrap>", line 1002, in _find_and_load_unlocked File "<frozen importlib._bootstrap>", line 945, in _find_spec File "E:\_software\anaconda\lib\site-packages\_distutils_hack\__init__.py", line 97, in find_spec return method() File "E:\_software\anaconda\lib\site-packages\_distutils_hack\__init__.py", line 108, in spec_for_distutils mod = importlib.import_module('setuptools._distutils') File "E:\_software\anaconda\lib\importlib\__init__.py", line 126, in import_module return _bootstrap._gcd_import(name[level:], package, level) File "E:\_software\anaconda\lib\site-packages\setuptools\__init__.py", line 16, in <module> import setuptools.version File "E:\_software\anaconda\lib\site-packages\setuptools\version.py", line 1, in <module> import pkg_resources File "E:\_software\anaconda\lib\site-packages\pkg_resources\__init__.py", line 3260, in <module> def _initialize_master_working_set(): File "E:\_software\anaconda\lib\site-packages\pkg_resources\__init__.py", line 3234, in _call_aside f(*args, **kwargs) File "E:\_software\anaconda\lib\site-packages\pkg_resources\__init__.py", line 3295, in _initialize_master_working_set list(map(working_set.add_entry, sys.path)) File "E:\_software\anaconda\lib\site-packages\pkg_resources\__init__.py", line 621, in add_entry for dist in find_distributions(entry, True): File "E:\_software\anaconda\lib\site-packages\pkg_resources\__init__.py", line 2096, in find_on_path for dist in factory(fullpath): File "E:\_software\anaconda\lib\site-packages\pkg_resources\__init__.py", line 2154, in distributions_from_metadata if len(os.listdir(path)) == 0: KeyboardInterrupt

我的电脑显卡是NVIDIA CUDA 11.6.114 driver,win10,64位的,在安装Anaconda时,有如下几个版本:Anaconda-1.4.0-Windows-x86_64.exe 241.4 MiB 2013-07-04 17:58 Anaconda-1.5.0-Linux-x86.sh 238.8 MiB 2013-07-04 18:10 Anaconda-1.5.0-Linux-x86_64.sh 306.7 MiB 2013-07-04 18:22 Anaconda-1.5.0-MacOSX-x86_64.sh 166.2 MiB 2013-07-04 18:37 Anaconda-1.5.0-Windows-x86.exe 236.0 MiB 2013-07-04 18:45 Anaconda-1.5.0-Windows-x86_64.exe 280.4 MiB 2013-07-04 18:57 Anaconda-1.5.1-MacOSX-x86_64.sh 166.2 MiB 2013-07-04 19:11 Anaconda-1.6.0-Linux-x86.sh 241.6 MiB 2013-07-04 19:19 Anaconda-1.6.0-Linux-x86_64.sh 309.5 MiB 2013-07-04 19:32 Anaconda-1.6.0-MacOSX-x86_64.sh 169.0 MiB 2013-07-04 19:47 Anaconda-1.6.0-Windows-x86.exe 244.9 MiB 2013-07-04 19:56 Anaconda-1.6.0-Windows-x86_64.exe 290.4 MiB 2013-07-04 20:09 Anaconda-1.6.1-Linux-x86.sh 247.1 MiB 2013-07-05 08:34 Anaconda-1.6.1-Linux-x86_64.sh 317.6 MiB 2013-07-05 09:20 Anaconda-1.6.1-MacOSX-x86_64.pkg 197.3 MiB 2013-07-05 10:05 Anaconda-1.6.1-MacOSX-x86_64.sh 170.0 MiB 2013-07-05 12:20 Anaconda-1.6.1-Windows-x86.exe 244.4 MiB 2013-07-05 12:29 Anaconda-1.6.1-Windows-x86_64.exe 289.9 MiB 2013-07-05 12:49 Anaconda-1.6.2-Windows-x86.exe 244.4 MiB 2013-07-10 06:19 Anaconda-1.6.2-Windows-x86_64.exe 289.9 MiB 2013-07-10 07:04 Anaconda-1.7.0-Linux-x86.sh 381.0 MiB 2013-09-20 01:04 Anaconda-1.7.0-Linux-x86_64.sh 452.6 MiB 2013-09-20 02:49 Anaconda-1.7.0-MacOSX-x86_64.pkg 256.7 MiB 2013-09-20 05:04 Anaconda-1.7.0-MacOSX-x86_64.sh 223.3 MiB 2013-09-20 11:00 Anaconda-1.7.0-Windows-x86.exe 280.6 MiB 2013-09-20 11:11 Anaconda-1.7.0-Windows-x86_64.exe,请问我应该安装哪一个?

中的引用提到了一个警告信息,该警告信息指示正在忽略一个无效的分发。具体来说,这个警告信息是关于-jupyter-core这个包的,而且它位于d:\program files\anaconda3\envs\pytorch\lib\site-packages目录下。这个警告通常是由于包的安装或配置出现问题导致的。 中的引用提到了类似的警告信息,说明该警告信息在解决方案中起到了作用。在这个引用中,警告信息位于d:\py37\lib\site-packages目录下。 中的引用提供了一个解决方案,即删除指定目录(C:\Users\用户名\anaconda3\envs\yolov5\Lib\site-packages)下所有前缀为~的文件夹。这可能是用来解决警告的一种方法,但具体操作要根据你的实际情况进行。 综上所述,警告信息WARNING: Ignoring invalid distribution -illow (d:\anaconda3-2022\conda_envs\pytorch1\lib\site-packages)是与某个包的安装或配置相关的问题。可以尝试删除指定目录下的特定文件夹来解决此问题。请注意,具体的解决方法可能因个人环境而异,最好根据自己的情况进行操作。123 #### 引用[.reference_title] - *1* *2* [WARNING: Ignoring invalid distribution -upyter-core (d:\program files\anaconda3\envs\pytorch\l](https://blog.csdn.net/qq_18815817/article/details/128854861)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] - *3* [深度学习bug笔记](https://blog.csdn.net/weixin_50592077/article/details/130267348)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]

最新推荐

300122智飞生物财务报告资产负债利润现金流量表企业治理结构股票交易研发创新等1391个指标(2007-2022).xlsx

包含1391个指标,其说明文档参考: https://blog.csdn.net/yushibing717/article/details/136115027 数据来源:基于上市公司公告数据整理 数据期间:从具体上市公司上市那一年开始-2022年度的数据,年度数据 包含各上市公司股票的、多年度的上市公司财务报表资产负债表、上市公司财务报表利润表、上市公司财务报表现金流量表间接法、直接法四表合在一个面板里面,方便比较和分析利用 含各个上市公司股票的、多年度的 偿债能力 披露财务指标 比率结构 经营能力 盈利能力 现金流量分析 风险水平 发展能力 每股指标 相对价值指标 股利分配 11类财务指标分析数据合在一个面板里面,方便比较和分析利用 含上市公司公告的公司治理、股权结构、审计、诉讼等数据 包含1391个指标,如: 股票简称 证券ID 注册具体地址 公司办公地址 办公地址邮政编码 董事会秘书 董秘联系电话 董秘传真 董秘电子邮箱 ..... 货币资金 其中:客户资金存款 结算备付金 其中:客户备付金 .........

Teaching interactive web platform - PHP教学互动平台构建(毕业设计项目).zip

Teaching interactive web platform - PHP教学互动平台构建(毕业设计项目)

DAC简介及参考电路PPT学习教案.pptx

DAC简介及参考电路PPT学习教案.pptx

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire

OceanBase数据库简介及原理解析

# 1. OceanBase数据库概述 ## 1.1 OceanBase数据库的发展历程 OceanBase数据库是由阿里巴巴集团自主研发的一款分布式关系型数据库系统,起源于阿里集团的业务需求和技术挑战。自2010年开始研发,经过多年的迭代和优化,OceanBase已经成为阿里巴巴集团重要的核心数据库产品之一。在实际的业务场景中,OceanBase已经被广泛应用于金融、电商、物流等各个领域。 ## 1.2 OceanBase数据库的特点和优势 OceanBase数据库具有以下特点和优势: - **分布式架构**:OceanBase采用多副本分布式架构,可以实现高可用和数据容灾。 -

python的pandas读取excel怎么将excel表里的列从1开始而不是0

在 Pandas 中,数据框的列默认从0开始编号,但我们可以通过自定义函数来进行数据列的转换。可以先将读取的数据框列的第一个值设为1,然后对后续列进行递增处理。 以下是示例代码: ```python import pandas as pd # 读取 Excel 文件 df = pd.read_excel('your_excel_file.xlsx') # 定义函数将列从1开始 def reset_column(x): return str(int(x) + 1) # 应用函数到所有列名 df = df.rename(columns=reset_column) # 打印数据框

第三章薪酬水平、薪酬系统的运行与控制.pptx

第三章薪酬水平、薪酬系统的运行与控制.pptx

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依

理解MVC架构:Laravel框架的核心设计

# 1. 第1章 项目立项与概述 ## 1.1 动机 随着互联网的快速发展,Web应用的开发需求不断增加。为了提高开发效率、代码可维护性和团队协作效率,我们决定采用MVC架构来设计我们的Web应用。 ## 1.2 服务器状态 我们的服务器环境采用了LAMP(Linux + Apache + MySQL + PHP)架构,满足了我们Web应用开发的基本需求,但为了更好地支持MVC架构,我们将对服务器进行适当的配置和优化。 ## 1.3 项目立项 经过团队讨论和决定,决定采用Laravel框架来开发我们的Web应用,基于MVC架构进行设计和开发,为此做出了项目立项。 ## 1.4 项目概况

如何将HDFS上的文件读入到Hbase,用java

要将HDFS上的文件读入到HBase,可以使用Java编写MapReduce程序实现,以下是实现步骤: 1. 首先需要创建一个HBase表,可使用HBase Shell或Java API创建; 2. 编写MapReduce程序,其中Map阶段读取HDFS上的文件,将数据转换成Put对象,然后将Put对象写入到HBase表中; 3. 在MapReduce程序中设置HBase表名、列族名、列名等参数; 4. 在程序运行前,需要将HBase相关的jar包和配置文件加入到classpath中; 5. 最后提交MapReduce任务运行即可。 以下是示例代码: ``` Configuration