ValueError: in user code: File "D:\ANACONDA3\lib\site-packages\keras\engine\training.py", line 1160, in train_function * return step_function(self, iterator) File "D:\ANACONDA3\lib\site-packages\keras\engine\training.py", line 1146, in step_function ** outputs = model.distribute_strategy.run(run_step, args=(data,)) File "D:\ANACONDA3\lib\site-packages\keras\engine\training.py", line 1135, in run_step ** outputs = model.train_step(data) File "D:\ANACONDA3\lib\site-packages\keras\engine\training.py", line 994, in train_step loss = self.compute_loss(x, y, y_pred, sample_weight) File "D:\ANACONDA3\lib\site-packages\keras\engine\training.py", line 1052, in compute_loss return self.compiled_loss( File "D:\ANACONDA3\lib\site-packages\keras\engine\compile_utils.py", line 265, in __call__ loss_value = loss_obj(y_t, y_p, sample_weight=sw) File "D:\ANACONDA3\lib\site-packages\keras\losses.py", line 152, in __call__ losses = call_fn(y_true, y_pred) File "D:\ANACONDA3\lib\site-packages\keras\losses.py", line 272, in call ** return ag_fn(y_true, y_pred, **self._fn_kwargs) File "D:\ANACONDA3\lib\site-packages\keras\losses.py", line 1990, in categorical_crossentropy return backend.categorical_crossentropy( File "D:\ANACONDA3\lib\site-packages\keras\backend.py", line 5529, in categorical_crossentropy target.shape.assert_is_compatible_with(output.shape) ValueError: Shapes (None, 1) and (None, 62) are incompatible
时间: 2023-07-21 07:00:57 浏览: 336
这个错误是由于模型的输出形状与目标数据的形状不匹配导致的。
根据错误信息,模型的输出形状是(None, 1),而目标数据的形状是(None, 62)。这表示模型输出的每个样本都是一个形状为(None, 1)的张量,而目标数据的每个样本都是一个形状为(None, 62)的张量。
你可以尝试调整模型的输出层,使其输出与目标数据的形状匹配。或者,你可以修改目标数据的形状,使其与模型的输出形状匹配。这取决于你的具体需求和数据。
如果你需要进一步的帮助,请提供更多关于你的模型和数据的信息,我将尽力提供更准确的解决方案。
相关问题
ValueError: in user code: File "C:\Users\Lenovo\anaconda3\lib\site-packages\keras\engine\training.py", line 2137, in predict_function * return step_function(self, iterator) File "C:\Users\Lenovo\anaconda3\lib\site-packages\keras\engine\training.py", line 2123, in step_function ** outputs = model.distribute_strategy.run(run_step, args=(data,)) File "C:\Users\Lenovo\anaconda3\lib\site-packages\keras\engine\training.py", line 2111, in run_step ** outputs = model.predict_step(data) File "C:\Users\Lenovo\anaconda3\lib\site-packages\keras\engine\training.py", line 2079, in predict_step return self(x, training=False) File "C:\Users\Lenovo\anaconda3\lib\site-packages\keras\utils\traceback_utils.py", line 70, in error_handler raise e.with_traceback(filtered_tb) from None File "C:\Users\Lenovo\anaconda3\lib\site-packages\keras\engine\input_spec.py", line 295, in assert_input_compatibility raise ValueError( ValueError: Input 0 of layer "mobilenet_1.00_224" is incompatible with the layer: expected shape=(None, 224, 224, 3), found shape=(32, 224, 3)
这个错误的原因是输入数据的形状不符合预期。在你的代码中,你使用了一个名为 "mobilenet_1.00_224" 的模型,该模型期望输入数据的形状为 (None, 224, 224, 3)。然而,你的输入数据的形状为 (32, 224, 3),这与期望的形状不一致。
你需要检查输入数据的形状是否正确,并确保它与模型期望的形状一致。如果你使用的是图像数据,请确保将它们的大小调整为模型期望的大小。
另外,你也可以尝试使用 Keras 的 `Input` 函数来为模型指定正确的输入形状。例如,你可以使用以下代码来创建一个输入张量:
```
from keras.layers import Input
input_tensor = Input(shape=(224, 224, 3))
```
然后,将这个输入张量传递给模型的第一层,例如:
```
from keras.applications import MobileNet
model = MobileNet(input_tensor=input_tensor, weights='imagenet', include_top=True)
```
这样可以确保输入数据的形状与模型期望的形状一致。
ValueError Traceback (most recent call last) Cell In[29], line 91 88 model.summary() 89 #模型训练 ---> 91 history = model.fit( 92 normed_train_data, train_labels, 93 epochs=100, validation_split=0.2, verbose=0) #verbose=表示不输出训练记录 94 #输出训练的各项指标值 95 hist = pd.DataFrame(history.history) File ~\anaconda3\lib\site-packages\keras\utils\traceback_utils.py:70, in filter_traceback.<locals>.error_handler(*args, **kwargs) 67 filtered_tb = _process_traceback_frames(e.__traceback__) 68 # To get the full stack trace, call: 69 # `tf.debugging.disable_traceback_filtering()` ---> 70 raise e.with_traceback(filtered_tb) from None 71 finally: 72 del filtered_tb File ~\AppData\Local\Temp\__autograph_generated_file1dq9vkey.py:15, in outer_factory.<locals>.inner_factory.<locals>.tf__train_function(iterator) 13 try: 14 do_return = True ---> 15 retval_ = ag__.converted_call(ag__.ld(step_function), (ag__.ld(self), ag__.ld(iterator)), None, fscope) 16 except: 17 do_return = False ValueError: in user code: File "C:\Users\lenovo\anaconda3\lib\site-packages\keras\engine\training.py", line 1284, in train_function * return step_function(self, iterator) File "C:\Users\lenovo\anaconda3\lib\site-packages\keras\engine\training.py", line 1268, in step_function ** outputs = model.distribute_strategy.run(run_step, args=(data,)) File "C:\Users\lenovo\anaconda3\lib\site-packages\keras\engine\training.py", line 1249, in run_step ** outputs = model.train_step(data) File "C:\Users\lenovo\anaconda3\lib\site-packages\keras\engine\training.py", line 1050, in train_step y_pred = self(x, training=True) File "C:\Users\lenovo\anaconda3\lib\site-packages\keras\utils\traceback_utils.py", line 70, in error_handler raise e.with_traceback(filtered_tb) from None File "C:\Users\lenovo\anaconda3\lib\site-packages\keras\engine\input_spec.py", line 298, in assert_input_compatibility raise ValueError( ValueError: Input 0 of layer "sequential_21" is incompatible with the layer: expected shape=(None, 14), found shape=(32, 15)
这个错误的原因是您的模型期望的输入形状与实际输入形状不匹配。具体来说,您的模型期望的输入形状是(None, 14),但您提供给模型的输入形状是(32, 15)。这意味着您的输入数据中有32个样本,每个样本有15个特征,而您的模型期望每个样本只有14个特征。
为了解决这个问题,您需要检查您的输入数据,并确保它们的形状与模型期望的形状匹配。您可以使用NumPy的reshape()函数来改变输入数据的形状,以确保其与模型期望的形状匹配。例如,如果您的输入数据是一个形状为(32, 15)的NumPy数组,您可以使用reshape()函数将其转换为形状为(32, 14)的数组,如下所示:
```
train_data = train_data.reshape((32, 14))
```
这样,您就可以将新的train_data输入到您的模型中了,而不会遇到形状不匹配的错误。
阅读全文