def create_LSTM_model(): # instantiate the model model = Sequential() model.add(Input(shape=(X_train.shape[1], X_train.shape[2]))) model.add(Reshape((X_train.shape[1], 1, X_train.shape[2], 1))) # cnn1d Layers model.add(ConvLSTM2D(filters=64, kernel_size=(1,3), activation='relu', padding='same', return_sequences=True)) model.add(Flatten()) model.add(Dropout(0.5)) model.add(RepeatVector(1)) # 添加lstm层 model.add(LSTM(64, activation = 'relu', return_sequences=True)) model.add(Dropout(0.5)) #添加注意力层 model.add(LSTM(64, activation = 'relu', return_sequences=False)) # 添加dropout model.add(Dropout(0.5)) model.add(Dense(128)) # 输出层 model.add(Dense(1, name='Output')) # 编译模型 model.compile(optimizer='adam', loss='mse', metrics=['mae']) return model # lstm network model = create_LSTM_model() # summary print(model.summary())修改该代码,解决ValueError: in user code: File "C:\Users\gaozhiyuan\anaconda3\lib\site-packages\keras\engine\training.py", line 1284, in train_function * return step_function(self, iterator) File "C:\Users\gaozhiyuan\anaconda3\lib\site-packages\keras\engine\training.py", line 1268, in step_function ** outputs = model.distribute_strategy.run(run_step, args=(data,)) File "C:\Users\gaozhiyuan\anaconda3\lib\site-packages\keras\engine\training.py", line 1249, in run_step ** outputs = model.train_step(data) File "C:\Users\gaozhiyuan\anaconda3\lib\site-packages\keras\engine\training.py", line 1050, in train_step y_pred = self(x, training=True) File "C:\Users\gaozhiyuan\anaconda3\lib\site-packages\keras\utils\traceback_utils.py", line 70, in error_handler raise e.with_traceback(filtered_tb) from None File "C:\Users\gaozhiyuan\anaconda3\lib\site-packages\keras\layers\reshaping\reshape.py", line 118, in _fix_unknown_dimension raise ValueError(msg) ValueError: Exception encountered when calling layer 'reshape_51' (type Reshape). total size of new array must be unchanged, input_shape = [10, 1, 1, 5], output_shape = [10, 1, 1, 1] Call arguments received by layer 'reshape_51' (type Reshape): • inputs=tf.Tensor(shape=(None, 10, 1, 1, 5), dtype=float32)问题
时间: 2023-10-06 07:05:14 浏览: 130
该代码中的问题在于 Reshape 层的输出形状与后续层的输入形状不一致,导致了 ValueError。具体来说,Reshape 层将输入形状从 (batch_size, time_steps, features) 转换为了 (batch_size, time_steps, 1, features, 1),然后经过 ConvLSTM2D 层后又经过了 Flatten 层,这个操作将 5 维的张量打平成了 3 维的张量,但是 RepeatVector 层却要求输入是 3 维的。因此,我们需要修改 Reshape 层的输出形状,使其与后续层的输入形状一致。具体来说,可以将 Reshape 层的输出形状修改为 (batch_size, time_steps, features),即删除 Reshape 层中的两个 1,代码如下所示:
```
def create_LSTM_model():
# instantiate the model
model = Sequential()
model.add(Input(shape=(X_train.shape[1], X_train.shape[2])))
model.add(Reshape((X_train.shape[1], X_train.shape[2], 1)))
# cnn1d Layers
model.add(ConvLSTM2D(filters=64, kernel_size=(1,3), activation='relu', padding='same', return_sequences=True))
model.add(Flatten())
model.add(Dropout(0.5))
model.add(RepeatVector(1))
# 添加lstm层
model.add(LSTM(64, activation='relu', return_sequences=True))
model.add(Dropout(0.5))
#添加注意力层
model.add(LSTM(64, activation='relu', return_sequences=False))
# 添加dropout
model.add(Dropout(0.5))
model.add(Dense(128))
# 输出层
model.add(Dense(1, name='Output'))
# 编译模型
model.compile(optimizer='adam', loss='mse', metrics=['mae'])
return model
# lstm network
model = create_LSTM_model()
# summary
print(model.summary())
```
这样修改后,Reshape 层的输出形状就与后续层的输入形状一致了,可以避免上述 ValueError 的问题。
阅读全文