def create_LSTM_model(): # instantiate the model model = Sequential() model.add(Input(shape=(X_train.shape[1], X_train.shape[2]))) # cnn1d Layers model.add(ConvLSTM2D(filters=64, kernel_size=(1,3), activation='relu', padding='same', return_sequences=True)) model.add(Dropout(0.5)) # 添加lstm层 model.add(LSTM(64, activation = 'relu', return_sequences=True)) model.add(Dropout(0.5)) #添加注意力层 model.add(LSTM(64, activation = 'relu', return_sequences=False)) # 添加dropout model.add(Dropout(0.5)) model.add(Dense(128)) # 输出层 model.add(Dense(1, name='Output')) # 编译模型 model.compile(optimizer='adam', loss='mse', metrics=['mae']) return model # lstm network model = create_LSTM_model() # summary print(model.summary())修改该代码,解决ValueError: Input 0 of layer "conv_lstm2d_14" is incompatible with the layer: expected ndim=5, found ndim=3. Full shape received: (None, 10, 1)问题
时间: 2024-01-30 12:02:01 浏览: 80
该错误是由于输入数据的维度不匹配导致的。ConvLSTM2D层期望输入的数据维度为5,而当前的输入数据维度为3。因此,需要将输入数据的维度转换为正确的形状。
可以通过在输入层之前添加一个Reshape层来实现这一点,将原始输入从(None,10,1)转换为(None,10,1,1,1)。
修改代码如下:
``` python
def create_LSTM_model():
# instantiate the model
model = Sequential()
model.add(Input(shape=(X_train.shape[1], X_train.shape[2])))
# reshape the input to match the expected input shape of the ConvLSTM2D layer
model.add(Reshape((X_train.shape[1], 1, X_train.shape[2], 1)))
# cnn1d Layers
model.add(ConvLSTM2D(filters=64, kernel_size=(1,3), activation='relu', padding='same', return_sequences=True))
model.add(Dropout(0.5))
# 添加lstm层
model.add(LSTM(64, activation = 'relu', return_sequences=True))
model.add(Dropout(0.5))
#添加注意力层
model.add(LSTM(64, activation = 'relu', return_sequences=False))
# 添加dropout
model.add(Dropout(0.5))
model.add(Dense(128))
# 输出层
model.add(Dense(1, name='Output'))
# 编译模型
model.compile(optimizer='adam', loss='mse', metrics=['mae'])
return model
# lstm network
model = create_LSTM_model()
# summary
print(model.summary())
```
这样就可以避免ValueError错误了。
阅读全文