Create a model def create_LSTM_model(X_train,n_steps,n_length, n_features): # instantiate the model model = Sequential() model.add(Input(shape=(X_train.shape[1], X_train.shape[2]))) model.add(Reshape((n_steps, 1, n_length, n_features))) model.add(ConvLSTM2D(filters=64, kernel_size=(1,3), activation='relu', input_shape=(n_steps, 1, n_length, n_features))) model.add(Flatten()) # cnn1d Layers # 添加lstm层 model.add(LSTM(64, activation = 'relu', return_sequences=True)) model.add(Dropout(0.5)) #添加注意力层 model.add(LSTM(64, activation = 'relu', return_sequences=False)) # 添加dropout model.add(Dropout(0.5)) model.add(Dense(128)) # 输出层 model.add(Dense(1, name='Output')) # 编译模型 model.compile(optimizer='adam', loss='mse', metrics=['mae']) return model # lstm network model = create_LSTM_model(X_train,n_steps,n_length, n_features) # summary print(model.summary())修改该代码,解决ValueError Traceback (most recent call last) <ipython-input-56-6c1ed99fa3ed> in <module> 53 # lstm network 54 ---> 55 model = create_LSTM_model(X_train,n_steps,n_length, n_features) 56 # summary 57 print(model.summary()) <ipython-input-56-6c1ed99fa3ed> in create_LSTM_model(X_train, n_steps, n_length, n_features) 17 model = Sequential() 18 model.add(Input(shape=(X_train.shape[1], X_train.shape[2]))) ---> 19 model.add(Reshape((n_steps, 1, n_length, n_features))) 20 21 ~\anaconda3\lib\site-packages\tensorflow\python\trackable\base.py in _method_wrapper(self, *args, **kwargs) 203 self._self_setattr_tracking = False # pylint: disable=protected-access 204 try: --> 205 result = method(self, *args, **kwargs) 206 finally: 207 self._self_setattr_tracking = previous_value # pylint: disable=protected-access ~\anaconda3\lib\site-packages\keras\utils\traceback_utils.py in error_handler(*args, **kwargs) 68 # To get the full stack trace, call: 69 # tf.debugging.disable_traceback_filtering() ---> 70 raise e.with_traceback(filtered_tb) from None 71 finally: 72 del filtered_tb ~\anaconda3\lib\site-packages\keras\layers\reshaping\reshape.py in _fix_unknown_dimension(self, input_shape, output_shape) 116 output_shape[unknown] = original // known 117 elif original != known: --> 118 raise ValueError(msg) 119 return output_shape 120 ValueError: Exception encountered when calling layer "reshape_5" (type Reshape). total size of new array must be unchanged, input_shape = [10, 1], output_shape = [10, 1, 1, 5] Call arguments received by layer "reshape_5" (type Reshape): • inputs=tf.Tensor(shape=(None, 10, 1), dtype=float32)问题
时间: 2024-01-29 12:04:12 浏览: 107
将Reshape层的输出形状修改为(n_steps, n_length, n_features)即可解决此问题,代码如下:
```
def create_LSTM_model(X_train, n_steps, n_length, n_features):
# instantiate the model
model = Sequential()
model.add(Input(shape=(X_train.shape[1], X_train.shape[2])))
model.add(Reshape((n_steps, n_length, n_features)))
model.add(ConvLSTM2D(filters=64, kernel_size=(1,3), activation='relu', input_shape=(n_steps, n_length, n_features)))
model.add(Flatten())
# lstm Layers
model.add(LSTM(64, activation='relu', return_sequences=True))
model.add(Dropout(0.5))
model.add(LSTM(64, activation='relu', return_sequences=False))
model.add(Dropout(0.5))
model.add(Dense(128))
# output layer
model.add(Dense(1, name='Output'))
# compile model
model.compile(optimizer='adam', loss='mse', metrics=['mae'])
return model
# lstm network
model = create_LSTM_model(X_train, n_steps, n_length, n_features)
# summary
print(model.summary())
```
阅读全文