def create_LSTM_model(X_train): # instantiate the model model = Sequential() X_train = X_train.reshape((X_train.shape[0], n_steps, 1, n_length, n_features)) model.add(Input(shape=(X_train.shape[1], X_train.shape[2]))) # cnn1d Layers model.add(ConvLSTM2D(filters=64, kernel_size=(1,3), activation='relu', input_shape=(n_steps, 1, n_length, n_features))) model.add(Flatten()) model.add(RepeatVector(n_outputs)) model.add(MaxPooling1D()) # 添加lstm层 model.add(LSTM(64, activation = 'relu', return_sequences=True)) model.add(Dropout(0.5)) #添加注意力层 model.add(LSTM(64, activation = 'relu', return_sequences=False)) # 添加dropout model.add(Dropout(0.5)) model.add(Dense(128)) # 输出层 model.add(Dense(1, name='Output')) # 编译模型 model.compile(optimizer='adam', loss='mse', metrics=['mae']) return model # lstm network model = create_LSTM_model() # summary print(model.summary())修改该代码,解决TypeError: create_LSTM_model() missing 1 required positional argument: 'X_train'问题
时间: 2023-12-08 08:03:24 浏览: 98
你需要将该函数的参数定义为可选参数,并且在函数内部添加一个判断语句,如下所示:
```python
def create_LSTM_model(X_train=None):
if X_train is None:
# 如果X_train为空,则返回一个空的模型
return Sequential()
# 其他代码不变
```
这样,当调用 `create_LSTM_model()` 函数时,如果不传递任何参数,则会返回一个空的模型。如果传递了参数,则会按照原来的逻辑创建模型。
相关问题
def create_LSTM_model(): # instantiate the model model = Sequential() X_train = X_train.reshape((X_train.shape[0], n_steps, 1, n_length, n_features)) model.add(Input(shape=(X_train.shape[1], X_train.shape[2]))) # cnn1d Layers model.add(ConvLSTM2D(filters=64, kernel_size=(1,3), activation='relu', input_shape=(n_steps, 1, n_length, n_features))) model.add(Flatten()) model.add(RepeatVector(n_outputs)) model.add(MaxPooling1D()) # 添加lstm层 model.add(LSTM(64, activation = 'relu', return_sequences=True)) model.add(Dropout(0.5)) #添加注意力层 model.add(LSTM(64, activation = 'relu', return_sequences=False)) # 添加dropout model.add(Dropout(0.5)) model.add(Dense(128)) # 输出层 model.add(Dense(1, name='Output')) # 编译模型 model.compile(optimizer='adam', loss='mse', metrics=['mae']) return model # lstm network model = create_LSTM_model() # summary print(model.summary())修改该代码,解决UnboundLocalError Traceback (most recent call last) <ipython-input-21-b28a080066f3> in <module> 46 return model 47 # lstm network ---> 48 model = create_LSTM_model() 49 # summary 50 print(model.summary()) <ipython-input-21-b28a080066f3> in create_LSTM_model() 12 # instantiate the model 13 model = Sequential() ---> 14 X_train = X_train.reshape((X_train.shape[0], n_steps, 1, n_length, n_features)) 15 model.add(Input(shape=(X_train.shape[1], X_train.shape[2]))) 16 UnboundLocalError: local variable 'X_train' referenced before assignment问题
这个错误是因为 `X_train` 变量在函数内部被重新定义,但在 `X_train.reshape()` 被调用时,该变量尚未被赋值。解决方法是将 `X_train` 作为参数传递给函数,并在调用函数时将其传递。修改后的代码如下:
```
def create_LSTM_model(X_train):
# instantiate the model
model = Sequential()
X_train = X_train.reshape((X_train.shape[0], n_steps, 1, n_length, n_features))
model.add(Input(shape=(X_train.shape[1], X_train.shape[2])))
# cnn1d Layers
model.add(ConvLSTM2D(filters=64, kernel_size=(1,3), activation='relu', input_shape=(n_steps, 1, n_length, n_features)))
model.add(Flatten())
model.add(RepeatVector(n_outputs))
model.add(MaxPooling1D())
# 添加lstm层
model.add(LSTM(64, activation='relu', return_sequences=True))
model.add(Dropout(0.5))
#添加注意力层
model.add(LSTM(64, activation='relu', return_sequences=False))
# 添加dropout
model.add(Dropout(0.5))
model.add(Dense(128))
# 输出层
model.add(Dense(1, name='Output'))
# 编译模型
model.compile(optimizer='adam', loss='mse', metrics=['mae'])
return model
# lstm network
X_train = ...
model = create_LSTM_model(X_train)
# summary
print(model.summary())
```
NameError Traceback (most recent call last) <ipython-input-29-e60fd4208158> in <module> 47 return model 48 # lstm network ---> 49 model = create_LSTM_model(X_train) 50 # summary 51 print(model.summary()) <ipython-input-29-e60fd4208158> in create_LSTM_model(X_train) 13 # instantiate the model 14 model = Sequential() ---> 15 X_train = X_train.reshape((X_train.shape[0], n_steps, 1, n_length, n_features)) 16 model.add(Input(shape=(X_train.shape[1], X_train.shape[2]))) 17 NameError: name 'n_steps' is not defined
这个错误是因为在代码中使用了变量 `n_steps`,但是该变量没有被定义。你需要在代码中定义 `n_steps` 的值,例如:
```python
n_steps = 4 # 定义时间步数为4
```
或者你可以在代码中查找是否有定义 `n_steps` 的代码,并确保其被正确执行。
阅读全文