matlab高斯核密度估计
时间: 2023-10-07 18:12:55 浏览: 167
MATLAB-高斯核密度估计
3星 · 编辑精心推荐
Matlab中的高斯核密度估计是一种用于估计数据集概率密度函数的方法。它使用高斯核函数对数据进行平滑处理,以生成平滑的连续曲线,表示概率密度的估计。具体步骤如下:
1. 将数据集读取到Matlab中,并选择要进行核密度估计的变量。
2. 调用ksdensity函数进行核密度估计。可以选择设置窗宽参数和核函数类型。窗宽控制平滑程度,较小的窗宽产生曲折的估计曲线,较大的窗宽产生光滑的估计曲线。
3. 绘制核密度估计图。可以和频率直方图一起绘制,以便比较两者之间的差异。还可以绘制正态分布的密度函数图,以便比较估计结果与理论分布的拟合情况。
总结起来,Matlab的高斯核密度估计是一种基于窗宽和核函数的方法,用于平滑估计数据集的概率密度函数。它可以帮助我们更好地理解数据的分布特征,并与理论分布进行比较。<span class="em">1</span><span class="em">2</span><span class="em">3</span>
#### 引用[.reference_title]
- *1* *2* *3* [9 MATLAB参数估计与假设检验-核密度估计](https://blog.csdn.net/MATLAB_matlab/article/details/56286868)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 100%"]
[ .reference_list ]
阅读全文