pytorch 评价指标
时间: 2023-11-07 19:06:41 浏览: 91
torch-metrics:pytorch中模型评估的指标
PyTorch提供了一些常用的评价指标来衡量模型的性能。以下是一些常见的PyTorch评价指标:
1. 准确率(Accuracy):准确率是最常用的评价指标之一,用来衡量分类模型的性能。它表示模型在预测中正确分类的样本比例。
2. 精确率(Precision):精确率衡量的是模型预测为正样本的样本中,实际为正样本的比例。它可以用来评估模型的预测质量。
3. 召回率(Recall):召回率衡量的是实际为正样本的样本中,被模型正确预测为正样本的比例。它可以用来评估模型对于正样本的检测能力。
4. F1分数(F1-score):F1分数是精确率和召回率的调和平均值。它综合考虑了模型的精确率和召回率,并可以用来评估模型在不同类别上的性能。
5. 均方根误差(Root Mean Squared Error,RMSE):均方根误差是回归模型中常用的评价指标。它表示模型预测值与真实值之间的差异程度,越小越好。
阅读全文