残差网络结合注意力机制的代码实现
时间: 2024-11-03 21:08:37 浏览: 26
Residual Attention Network for Image Classification 相关复现代码
残差网络(Residual Network, ResNet)结合注意力机制可以增强深度神经网络的学习能力,特别是在处理视觉信息时,比如图像分类、目标检测等领域。以下是一个简化的PyTorch代码示例,展示了如何在一个基本的ResNet架构中集成自注意力层:
```python
import torch.nn as nn
# 定义基础的ResNet块
class BasicBlock(nn.Module):
def __init__(self, in_channels, out_channels, attention=False):
super(BasicBlock, self).__init__()
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1)
self.bn1 = nn.BatchNorm2d(out_channels)
self.relu = nn.ReLU(inplace=True)
if attention:
# 添加注意力模块
self.attention = nn.Sequential(
nn.Linear(out_channels, out_channels // 8),
nn.ReLU(),
nn.Linear(out_channels // 8, out_channels),
nn.Softmax(dim=-1)
)
else:
self.attention = None
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1)
self.bn2 = nn.BatchNorm2d(out_channels)
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.attention is not None:
# 使用注意力权重对特征图加权求和
attention_weights = self.attention(out.mean(dim=[2, 3]))[:, :, None, None]
out = out * attention_weights + residual
return out
# 构建包含注意力的ResNet模型
class AttentionResNet(nn.Module):
def __init__(self, num_blocks, attention_layers=1, ...):
super(AttentionResNet, self).__init__()
self.layer1 = ... # 初始化基本的ResNet层序列
self.attention_layers = attention_layers
for i in range(attention_layers):
self.layer1.add_module(f"attention_{i}", BasicBlock(..., attention=True))
...
def forward(self, x):
x = self.layer1(x)
...
return final_output
```
在这个例子中,`attention_layers`参数控制了有多少层ResNet会包含注意力模块。注意这只是一个简化版本,实际应用中你需要根据具体的项目需求调整网络结构和超参数。
阅读全文