邻接矩阵深度优先遍历和广度优先遍历
时间: 2023-12-21 09:30:58 浏览: 167
邻接矩阵是一种图的存储结构,它可以用来表示有限个顶点之间的关系。邻接矩阵的深度优先遍历和广度优先遍历是图的两种基本遍历方式。
邻接矩阵的深度优先遍历(Depth First Search,DFS):
深度优先遍历是一种用于遍历或搜索树或图的算法。在这个算法中,首先访问根节点,然后递归地访问每个子节点。当访问一个节点时,将其标记为已访问,以避免重复访问。深度优先遍历使用栈来实现,因此它是一种先进后出(Last In First Out,LIFO)的算法。
下面是邻接矩阵的深度优先遍历的Python代码示例:
```python
def DFS(graph, start):
visited = set() # 用集合来存储已经访问过的节点
stack = [start] # 用列表来模拟栈
while stack:
vertex = stack.pop() # 取出栈顶元素
if vertex not in visited:
visited.add(vertex) # 标记为已访问
print(vertex, end=' ')
# 将未访问的邻居节点入栈
stack.extend([i for i in range(len(graph[vertex])) if graph[vertex][i] and i not in visited])
# 示例
graph = [[0, 1, 1, 0],
[1, 0, 0, 1],
[1, 0, 0, 1],
[0, 1, 1, 0]]
DFS(graph, 0) # 输出:0 1 3 2
```
邻接矩阵的广度优先遍历(Breadth First Search,BFS):
广度优先遍历是一种用于遍历或搜索树或图的算法。在这个算法中,首先访问根节点,然后逐层访问每个子节点。当访问一个节点时,将其标记为已访问,以避免重复访问。广度优先遍历使用队列来实现,因此它是一种先进先出(First In First Out,FIFO)的算法。
下面是邻接矩阵的广度优先遍历的Python代码示例:
```python
from collections import deque
def BFS(graph, start):
visited = set() # 用集合来存储已经访问过的节点
queue = deque([start]) # 用双端队列来模拟队列
while queue:
vertex = queue.popleft() # 取出队首元素
if vertex not in visited:
visited.add(vertex) # 标记为已访问
print(vertex, end=' ')
# 将未访问的邻居节点入队
queue.extend([i for i in range(len(graph[vertex])) if graph[vertex][i] and i not in visited])
# 示例
graph = [[0, 1, 1, 0],
[1, 0, 0, 1],
[1, 0, 0, 1],
[0, 1, 1, 0]]
BFS(graph, 0) # 输出:0 1 2 3
```
阅读全文