CausalVAE的具体代码
时间: 2024-10-08 12:08:28 浏览: 47
Causal Variational Autoencoder (CausalVAE)是一种结合了无监督学习和因果推断的技术,在处理有因果结构的数据时很有用。这种模型尝试从观测数据中恢复潜在的因果变量。以下是一个简单的CausalVAE的基本框架,使用PyTorch作为例子:
```python
import torch
import torch.nn as nn
class Encoder(nn.Module):
# 假设输入大小为( batch_size, input_dim )
def __init__(self, input_dim, hidden_dim, z_dim):
super(Encoder, self).__init__()
self.fc1 = nn.Linear(input_dim, hidden_dim)
self.fc_mu = nn.Linear(hidden_dim, z_dim)
self.fc_logvar = nn.Linear(hidden_dim, z_dim)
def forward(self, x):
h = torch.relu(self.fc1(x))
mu = self.fc_mu(h)
logvar = self.fc_logvar(h)
return mu, logvar
class Decoder(nn.Module):
def __init__(self, z_dim, output_dim, hidden_dim):
super(Decoder, self).__init__()
self.fc1 = nn.Linear(z_dim, hidden_dim)
self.fc2 = nn.Linear(hidden_dim, output_dim)
def forward(self, z):
h = torch.relu(self.fc1(z))
out = torch.sigmoid(self.fc2(h))
return out
class CausalVAE(nn.Module):
def __init__(self, encoder, decoder):
super(CausalVAE, self).__init__()
self.encoder = encoder
self.decoder = decoder
def forward(self, x):
mu, logvar = self.encoder(x)
std = torch.exp(0.5 * logvar)
eps = torch.randn_like(std)
z = mu + eps * std
recon_x = self.decoder(z)
return recon_x, mu, logvar
```
这只是一个基础模板,实际应用中可能还需要处理更复杂的条件和因果图。
阅读全文