aes gcm c语言实现

时间: 2023-07-17 14:02:58 浏览: 747
ZIP

AES GCM算法源码

star4星 · 用户满意度95%
### 回答1: AES GCM(Advanced Encryption Standard,Galios/Counter Mode)是一种对称加密算法,常用于数据保护和加密通信。以下是一个使用C语言实现AES GCM的简单示例: ```c #include <stdio.h> #include <string.h> #include <openssl/aes.h> #include <openssl/rand.h> #include <openssl/evp.h> #define AES_KEY_BITS 128 #define GCM_IV_SIZE 12 #define GCM_TAG_SIZE 16 int aes_gcm_encrypt(const unsigned char *plaintext, int plaintext_len, const unsigned char *aad, int aad_len, const unsigned char *key, unsigned char *ciphertext, unsigned char *tag) { EVP_CIPHER_CTX *ctx; int len; int ciphertext_len; // 创建并初始化EVP_CIPHER_CTX对象 ctx = EVP_CIPHER_CTX_new(); EVP_EncryptInit_ex(ctx, EVP_aes_128_gcm(), NULL, NULL, NULL); // 设置加密密钥 EVP_EncryptInit_ex(ctx, NULL, NULL, key, NULL); // 设置附加的认证数据(可选) EVP_EncryptUpdate(ctx, NULL, &len, aad, aad_len); // 加密明文数据 EVP_EncryptUpdate(ctx, ciphertext, &len, plaintext, plaintext_len); ciphertext_len = len; // 结束加密过程,并生成认证标签 EVP_EncryptFinal_ex(ctx, ciphertext + len, &len); ciphertext_len += len; EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_GCM_GET_TAG, GCM_TAG_SIZE, tag); // 释放EVP_CIPHER_CTX对象 EVP_CIPHER_CTX_free(ctx); return ciphertext_len; } int aes_gcm_decrypt(const unsigned char *ciphertext, int ciphertext_len, const unsigned char *aad, int aad_len, const unsigned char *tag, const unsigned char *key, unsigned char *plaintext) { EVP_CIPHER_CTX *ctx; int len; int plaintext_len; int ret; // 创建并初始化EVP_CIPHER_CTX对象 ctx = EVP_CIPHER_CTX_new(); EVP_DecryptInit_ex(ctx, EVP_aes_128_gcm(), NULL, NULL, NULL); // 设置解密密钥 EVP_DecryptInit_ex(ctx, NULL, NULL, key, NULL); // 设置附加的认证数据(可选) EVP_DecryptUpdate(ctx, NULL, &len, aad, aad_len); // 解密密文数据 EVP_DecryptUpdate(ctx, plaintext, &len, ciphertext, ciphertext_len); plaintext_len = len; // 设置接收到的认证标签 EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_GCM_SET_TAG, GCM_TAG_SIZE, (void *)tag); // 结束解密过程,如果认证失败则返回错误 ret = EVP_DecryptFinal_ex(ctx, plaintext + len, &len); plaintext_len += len; // 释放EVP_CIPHER_CTX对象 EVP_CIPHER_CTX_free(ctx); return ret == 1 ? plaintext_len : -1; } int main() { unsigned char key[AES_KEY_BITS / 8]; unsigned char iv[GCM_IV_SIZE]; unsigned char plaintext[] = "Hello, AES GCM!"; unsigned char ciphertext[sizeof(plaintext)]; unsigned char decryptedtext[sizeof(plaintext)]; unsigned char tag[GCM_TAG_SIZE]; // 生成密钥 if (RAND_bytes(key, sizeof(key)) != 1) { printf("Error generating AES key.\n"); return 1; } // 生成初始化向量 if (RAND_bytes(iv, sizeof(iv)) != 1) { printf("Error generating GCM IV.\n"); return 1; } // 加密明文数据 int ciphertext_len = aes_gcm_encrypt(plaintext, sizeof(plaintext) - 1, NULL, 0, key, ciphertext, tag); printf("Ciphertext: "); for (int i = 0; i < ciphertext_len; i++) { printf("%02x", ciphertext[i]); } printf("\n"); printf("Tag: "); for (int i = 0; i < GCM_TAG_SIZE; i++) { printf("%02x", tag[i]); } printf("\n"); // 解密密文数据 int decryptedtext_len = aes_gcm_decrypt(ciphertext, ciphertext_len, NULL, 0, tag, key, decryptedtext); decryptedtext[decryptedtext_len] = '\0'; printf("Decrypted text: %s\n", decryptedtext); return 0; } ``` 这个简单的示例演示了如何使用OpenSSL库中的AES GCM函数来对一个简单的字符串进行加密和解密。首先,需要通过`RAND_bytes`函数生成一个随机的密钥和初始化向量(IV)。然后,调用`aes_gcm_encrypt`函数来加密明文数据,并生成一个认证标签。最后,调用`aes_gcm_decrypt`函数来解密密文数据,并使用认证标签进行认证。最终得到的解密结果与原始明文数据进行比较,以验证解密过程的准确性。 ### 回答2: AES GCM(Advanced Encryption Standard - Galois/Counter Mode)是一种用于对称加密和认证的加密模式。它结合了AES和GCM两种算法的特点,能够提供加密安全性和完整性保护。 在C语言中实现AES GCM需要使用一个可供调用的密码库,比如OpenSSL或者mbed TLS。以下是一个基本的AES GCM加密过程的C语言实现示例: ```c #include <stdio.h> #include <stdlib.h> #include <string.h> #include <openssl/aes.h> #include <openssl/rand.h> #include <openssl/evp.h> int main() { unsigned char *plaintext = (unsigned char *)"Hello World"; int plaintext_len = strlen((char *)plaintext); // 生成随机的128位密钥 unsigned char *key = (unsigned char *)malloc(AES_BLOCK_SIZE); if (!RAND_bytes(key, AES_BLOCK_SIZE)) { printf("无法生成密钥"); return -1; } // 初始化参数结构 EVP_CIPHER_CTX *ctx = EVP_CIPHER_CTX_new(); EVP_EncryptInit_ex(ctx, EVP_aes_128_gcm(), NULL, NULL, NULL); // 设置密钥和IV EVP_EncryptInit_ex(ctx, NULL, NULL, key, key); // 加密数据 unsigned char *ciphertext = (unsigned char *)malloc(plaintext_len + AES_BLOCK_SIZE); int ciphertext_len; EVP_EncryptUpdate(ctx, ciphertext, &ciphertext_len, plaintext, plaintext_len); // 根据需要生成额外的认证标签 int tag_len; EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_GCM_GET_TAG, AES_BLOCK_SIZE, ciphertext + ciphertext_len); ciphertext_len += AES_BLOCK_SIZE; // 解密数据 unsigned char *deciphertext = (unsigned char *)malloc(ciphertext_len); int deciphertext_len; EVP_DecryptInit_ex(ctx, NULL, NULL, key, key); EVP_DecryptUpdate(ctx, deciphertext, &deciphertext_len, ciphertext, ciphertext_len); // 验证认证标签 EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_GCM_SET_TAG, AES_BLOCK_SIZE, ciphertext + ciphertext_len); int result = EVP_DecryptFinal_ex(ctx, deciphertext + deciphertext_len, &deciphertext_len); if (result > 0) { printf("解密成功: %s\n", deciphertext); } else { printf("解密失败\n"); } // 释放资源 EVP_CIPHER_CTX_free(ctx); free(ciphertext); free(deciphertext); return 0; } ``` 上面的示例代码演示了如何使用OpenSSL库实现AES GCM加密。首先,我们生成一个随机的128位密钥,然后使用密钥初始化参数结构。接下来,我们对明文进行加密,并生成额外的认证标签。然后,我们再次使用密钥进行解密,并验证认证标签。最后,我们释放资源。 这只是一个最基本的示例,实际应用中还需要处理传输明文、密钥和认证标签的方式,以及错误的处理等。希望对你有所帮助! ### 回答3: AES (Advanced Encryption Standard) 是一种对称加密算法,它采用固定长度的分组加密数据。GCM (Galois/Counter Mode) 是一种常见的加密模式,结合了AES算法和Galois域运算,提供了完整的密文完整性和认证功能。 在C语言中,我们可以使用OpenSSL库来实现AES GCM算法。首先,我们需要在代码中包含相应的头文件和链接相应的库文件。 #include <openssl/evp.h> #include <openssl/aes.h> 接下来,我们需要定义一些常量和变量,用于存储加密所需的密钥、IV向量、明文和密文。 const int KEY_SIZE = 256; // 设置密钥长度为256位 const int IV_SIZE = 96; // IV向量长度为96位 const int TAG_SIZE = 128; // 认证标签长度为128位 const int BUFFER_SIZE = 1024; // 设置缓冲区大小为1024字节 unsigned char key[KEY_SIZE / 8]; // 存储密钥的变量 unsigned char iv[IV_SIZE / 8]; // 存储IV向量的变量 unsigned char plaintext[BUFFER_SIZE]; // 存储明文的变量 unsigned char ciphertext[BUFFER_SIZE + TAG_SIZE / 8]; // 存储密文的变量 然后,我们可以定义相应的函数来进行加密和解密操作。 void aes_gcm_encrypt() { EVP_CIPHER_CTX *ctx; int len, ciphertext_len; ctx = EVP_CIPHER_CTX_new(); EVP_EncryptInit_ex(ctx, EVP_aes_256_gcm(), NULL, NULL, NULL); EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_GCM_SET_IVLEN, IV_SIZE / 8, NULL); EVP_EncryptInit_ex(ctx, NULL, NULL, key, iv); EVP_EncryptUpdate(ctx, ciphertext, &len, plaintext, sizeof(plaintext)); ciphertext_len = len; EVP_EncryptFinal_ex(ctx, ciphertext + len, &len); ciphertext_len += len; EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_GCM_GET_TAG, TAG_SIZE / 8, ciphertext + ciphertext_len); EVP_CIPHER_CTX_free(ctx); } void aes_gcm_decrypt() { EVP_CIPHER_CTX *ctx; int len, plaintext_len; ctx = EVP_CIPHER_CTX_new(); EVP_DecryptInit_ex(ctx, EVP_aes_256_gcm(), NULL, NULL, NULL); EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_GCM_SET_IVLEN, IV_SIZE / 8, NULL); EVP_DecryptInit_ex(ctx, NULL, NULL, key, iv); EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_GCM_SET_TAG, TAG_SIZE / 8, ciphertext + ciphertext_len - TAG_SIZE / 8); EVP_DecryptUpdate(ctx, plaintext, &len, ciphertext, sizeof(ciphertext) - TAG_SIZE / 8); plaintext_len = len; EVP_DecryptFinal_ex(ctx, plaintext + len, &len); plaintext_len += len; EVP_CIPHER_CTX_free(ctx); } 最后,我们可以在主函数中使用相应的函数来加密和解密数据。 int main() { // 设置密钥和IV向量 // 设置明文和密文 // 调用aes_gcm_encrypt()函数进行加密 // 调用aes_gcm_decrypt()函数进行解密 return 0; } 这样,我们就可以使用C语言实现AES GCM算法。当然,实际应用中还应该考虑密钥和IV向量的生成、密文的存储和传输等问题。希望以上回答能够帮助到你!
阅读全文

相关推荐

最新推荐

recommend-type

基于C语言实现的aes256加密算法示例

总结起来,基于C语言实现的AES256加密算法需要理解并实现以下核心部分: - 结构体`aes256_context`的定义和使用 - 密钥的扩展和存储 - ECB模式的加密和解密函数 - 非线性变换函数`F()`和`FD()` - AES的S盒查找表 - ...
recommend-type

白色大气风格的旅游酒店企业网站模板.zip

白色大气风格的旅游酒店企业网站模板.zip
recommend-type

python实现用户注册

python实现用户注册
recommend-type

【图像压缩】基于matlab GUI Haar小波变换图像压缩(含PSNR)【含Matlab源码 9979期】.zip

Matlab领域上传的视频均有对应的完整代码,皆可运行,亲测可用,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
recommend-type

(177354822)java小鸟游戏.zip

内容来源于网络分享,如有侵权请联系我删除。另外如果没有积分的同学需要下载,请私信我。
recommend-type

RStudio中集成Connections包以优化数据库连接管理

资源摘要信息:"connections:https" ### 标题解释 标题 "connections:https" 直接指向了数据库连接领域中的一个重要概念,即通过HTTP协议(HTTPS为安全版本)来建立与数据库的连接。在IT行业,特别是数据科学与分析、软件开发等领域,建立安全的数据库连接是日常工作的关键环节。此外,标题可能暗示了一个特定的R语言包或软件包,用于通过HTTP/HTTPS协议实现数据库连接。 ### 描述分析 描述中提到的 "connections" 是一个软件包,其主要目标是与R语言的DBI(数据库接口)兼容,并集成到RStudio IDE中。它使得R语言能够连接到数据库,尽管它不直接与RStudio的Connections窗格集成。这表明connections软件包是一个辅助工具,它简化了数据库连接的过程,但并没有改变RStudio的用户界面。 描述还提到connections包能够读取配置,并创建与RStudio的集成。这意味着用户可以在RStudio环境下更加便捷地管理数据库连接。此外,该包提供了将数据库连接和表对象固定为pins的功能,这有助于用户在不同的R会话中持续使用这些资源。 ### 功能介绍 connections包中两个主要的功能是 `connection_open()` 和可能被省略的 `c`。`connection_open()` 函数用于打开数据库连接。它提供了一个替代于 `dbConnect()` 函数的方法,但使用完全相同的参数,增加了自动打开RStudio中的Connections窗格的功能。这样的设计使得用户在使用R语言连接数据库时能有更直观和便捷的操作体验。 ### 安装说明 描述中还提供了安装connections包的命令。用户需要先安装remotes包,然后通过remotes包的`install_github()`函数安装connections包。由于connections包不在CRAN(综合R档案网络)上,所以需要使用GitHub仓库来安装,这也意味着用户将能够访问到该软件包的最新开发版本。 ### 标签解读 标签 "r rstudio pins database-connection connection-pane R" 包含了多个关键词: - "r" 指代R语言,一种广泛用于统计分析和图形表示的编程语言。 - "rstudio" 指代RStudio,一个流行的R语言开发环境。 - "pins" 指代R包pins,它可能与connections包一同使用,用于固定数据库连接和表对象。 - "database-connection" 指代数据库连接,即软件包要解决的核心问题。 - "connection-pane" 指代RStudio IDE中的Connections窗格,connections包旨在与之集成。 - "R" 代表R语言社区或R语言本身。 ### 压缩包文件名称列表分析 文件名称列表 "connections-master" 暗示了一个可能的GitHub仓库名称或文件夹名称。通常 "master" 分支代表了软件包或项目的稳定版或最新版,是大多数用户应该下载和使用的版本。 ### 总结 综上所述,connections包是一个专为R语言和RStudio IDE设计的软件包,旨在简化数据库连接过程并提供与Connections窗格的集成。它允许用户以一种更为方便的方式打开和管理数据库连接,而不直接提供与Connections窗格的集成。connections包通过读取配置文件和固定连接对象,增强了用户体验。安装connections包需通过remotes包从GitHub获取最新开发版本。标签信息显示了connections包与R语言、RStudio、数据库连接以及R社区的紧密联系。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

Keil uVision5全面精通指南

# 摘要 Keil uVision5是一个集成开发环境,广泛应用于嵌入式系统的开发。本文从基础入门开始,详细介绍了Keil uVision5的项目管理、配置、编程实践、高级功能及技巧,并通过项目案例分析,深入阐述了其在实际开发中的应用。本篇论文特别注重于项目创建、目标配置、调试环境搭建、性能优化、脚本编程与自动化、高级调试技术,以及通过嵌入式操作系统集成和驱动开发流程的案例分析,展示了Keil uVision5的实用性和高效性。文章还展望了Keil uVision5的未来发展趋势,并提供了社区资源和学习渠道,为读者提供了一个全面掌握Keil uVision5的平台。 # 关键字 Keil u
recommend-type

flink提交给yarn19个全量同步MYsqlCDC的作业,flink的配置参数怎样设置

在Flink中,如果你需要将19个MySQL CDC(Change Data Capture)的全量同步作业提交到YARN上,你需要确保Flink集群和YARN进行了正确的集成,并配置了适当的参数。以下是可能涉及到的一些关键配置: 1. **并行度(Parallelism)**:每个作业的并行度应该设置得足够高,以便充分利用YARN提供的资源。例如,如果你有19个任务,你可以设置总并行度为19或者是一个更大的数,取决于集群规模。 ```yaml parallelism = 19 或者 根据实际资源调整 ``` 2. **YARN资源配置**:Flink通过`yarn.a
recommend-type

PHP博客旅游的探索之旅

资源摘要信息:"博客旅游" 博客旅游是一个以博客形式分享旅行经验和旅游信息的平台。随着互联网技术的发展和普及,博客作为一种个人在线日志的形式,已经成为人们分享生活点滴、专业知识、旅行体验等的重要途径。博客旅游正是结合了博客的个性化分享特点和旅游的探索性,让旅行爱好者可以记录自己的旅游足迹、分享旅游心得、提供目的地推荐和旅游攻略等。 在博客旅游中,旅行者可以是内容的创造者也可以是内容的消费者。作为创造者,旅行者可以通过博客记录下自己的旅行故事、拍摄的照片和视频、体验和评价各种旅游资源,如酒店、餐馆、景点等,还可以分享旅游小贴士、旅行日程规划等实用信息。作为消费者,其他潜在的旅行者可以通过阅读这些博客内容获得灵感、获取旅行建议,为自己的旅行做准备。 在技术层面,博客平台的构建往往涉及到多种编程语言和技术栈,例如本文件中提到的“PHP”。PHP是一种广泛使用的开源服务器端脚本语言,特别适合于网页开发,并可以嵌入到HTML中使用。使用PHP开发的博客旅游平台可以具有动态内容、用户交互和数据库管理等强大的功能。例如,通过PHP可以实现用户注册登录、博客内容的发布与管理、评论互动、图片和视频上传、博客文章的分类与搜索等功能。 开发一个功能完整的博客旅游平台,可能需要使用到以下几种PHP相关的技术和框架: 1. HTML/CSS/JavaScript:前端页面设计和用户交互的基础技术。 2. 数据库管理:如MySQL,用于存储用户信息、博客文章、评论等数据。 3. MVC框架:如Laravel或CodeIgniter,提供了一种组织代码和应用逻辑的结构化方式。 4. 服务器技术:如Apache或Nginx,作为PHP的运行环境。 5. 安全性考虑:需要实现数据加密、输入验证、防止跨站脚本攻击(XSS)等安全措施。 当创建博客旅游平台时,还需要考虑网站的可扩展性、用户体验、移动端适配、搜索引擎优化(SEO)等多方面因素。一个优质的博客旅游平台,不仅能够提供丰富的内容,还应该注重用户体验,包括页面加载速度、界面设计、内容的易于导航等。 此外,博客旅游平台还可以通过整合社交媒体功能,允许用户通过社交媒体账号登录、分享博客内容到社交网络,从而提升平台的互动性和可见度。 综上所述,博客旅游作为一个结合了旅行分享和在线日志的平台,对于旅行者来说,不仅是一个记录和分享旅行体验的地方,也是一个获取旅行信息、学习旅游知识的重要资源。而对于开发者来说,构建这样一个平台需要运用到多种技术和考虑多个技术细节,确保平台的功能性和用户体验。