arima模型数学建模
时间: 2023-08-24 16:04:24 浏览: 155
ARIMA模型是一种用于时间序列分析和预测的数学建模方法。它是由博克思(Box)和詹金斯(Jenkins)于70年代初提出的,全称为差分自回归移动平均模型(Autoregressive Integrated Moving Average Model)。\[2\]
ARIMA模型的建模过程包括三个主要的步骤:选择模型阶数、估计模型参数和模型诊断。在选择模型阶数时,需要考虑自回归(AR)、差分(Integrated)和移动平均(MA)的阶数。其中,差分的次数d是一个重要的参数,它表示对原始时间序列进行了多少次差分。例如,如果进行了一次差分,那么d=1。\[3\]
在估计模型参数时,可以使用最大似然估计方法来确定模型的参数值。最后,在模型诊断阶段,可以通过检查残差序列的自相关图和偏自相关图来评估模型的拟合效果。
总之,ARIMA模型是一种常用的时间序列分析方法,通过对时间序列数据进行差分、自回归和移动平均操作,可以建立一个能够较好地拟合和预测时间序列的数学模型。
#### 引用[.reference_title]
- *1* *2* *3* [ARIMA(简述arima模型建模步骤)](https://blog.csdn.net/weixin_42501881/article/details/116527593)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item]
[ .reference_list ]
阅读全文