对数正态分布累积概率密度
时间: 2024-06-13 10:05:08 浏览: 323
对数正态分布是指随机变量的对数服从正态分布的分布。在Matlab中,可以使用lognstat函数计算对数正态分布的均值和标准差,使用logncdf函数计算对数正态分布的累积概率密度。具体使用方法如下:
假设随机变量X服从参数为mu和sigma的对数正态分布,则其累积概率密度可以用logncdf函数计算:
p = logncdf(x,mu,sigma)
其中,x为自变量,mu为对数正态分布的均值,sigma为对数正态分布的标准差,p为累积概率密度。
需要注意的是,logncdf函数中的mu和sigma参数是指对数正态分布的均值和标准差,而不是原始数据的均值和标准差。如果需要计算原始数据的均值和标准差,可以使用lognstat函数。
相关问题
用matlab 在同一个图中画出正态分布和对数正态分布的密度函数和分布函数图像
在MATLAB中,你可以使用`normpdf`和`lognormpdf`函数来绘制正态分布(Normal Distribution)和对数正态分布(Lognormal Distribution)的密度函数曲线,以及使用直方图或累积分布函数(CDF)来展示它们的概率分布。以下是创建这两个图形的基本步骤:
1. 导入所需库和设置绘图范围:
```matlab
[x, y_norm] = linspace(-5, 5, 400); % 创建x轴数据点
y_lognorm = lognormpdf(x, 1); % 对数正态分布参数可以调整
% 设定绘图范围和标题
figure;
xlabel('X');
ylabel('Probability Density');
title('Density Function of Normal and Lognormal Distributions');
```
2. 绘制正态分布密度函数:
```matlab
plot(x, y_norm, 'b', 'LineWidth', 2, 'DisplayName', 'Normal Distribution');
hold on; % 保持当前会话以便在同一图中添加更多线
```
3. 绘制对数正态分布密度函数:
```matlab
plot(x, y_lognorm, 'r--', 'LineWidth', 2, 'DisplayName', 'Lognormal Distribution (lnormpdf)');
```
4. 创建直方图表示分布函数:
```matlab
histogram(randn(1000), 'BinWidth', 0.5, 'FaceColor', [0.7 0.7 0.7], 'EdgeColor', 'k'); % 使用随机生成的数据点
hold on;
legend('show'); % 显示图例
```
5. 绘制累积分布函数:
```matlab
[y_cdf_norm, x_cdf_norm] = ecdf(randn(1000)); % 正态分布CDF
[y_cdf_lognorm, x_cdf_lognorm] = ecdf(lognrnd(1, 1, 1000)); % 对数正态分布CDF
plot(x_cdf_norm, y_cdf_norm, 'b-', x_cdf_lognorm, y_cdf_lognorm, 'r--', 'DisplayName', 'Cumulative Distribution Functions');
```
6. 最后,显示和保存图表:
```matlab
grid on; % 添加网格线
xlim([-5, 5]); % 调整x轴范围
ylim([0, 0.5]); % 调整y轴范围
title('Both Distributions: Density and Cumulative Distribution Functions');
saveas(gcf, 'density_and_distribution_functions.png'); % 保存图片
```
对数正态分布 pyhton
对数正态分布在Python中可以使用SciPy库中的lognorm函数进行建模和计算。lognorm函数的参数包括位置参数(loc)、尺度参数(scale)和形状参数(s),其中形状参数s决定了分布的形状。可以使用该函数生成对数正态分布的随机样本、计算概率密度函数(PDF)、累积分布函数(CDF)等。
以下是一个使用lognorm函数生成对数正态分布随机样本的示例代码:
```python
import numpy as np
from scipy.stats import lognorm
# 设置参数
mu = 0 # 位置参数
sigma = 1 # 尺度参数
s = 0.5 # 形状参数
# 生成随机样本
sample = lognorm.rvs(s, loc=mu, scale=np.exp(sigma), size=1000)
# 计算概率密度函数
pdf = lognorm.pdf(x, s, loc=mu, scale=np.exp(sigma))
# 计算累积分布函数
cdf = lognorm.cdf(x, s, loc=mu, scale=np.exp(sigma))
```
在上述代码中,通过设置位置参数(loc)、尺度参数(scale)和形状参数(s)来定义对数正态分布。然后可以使用lognorm.rvs函数生成指定参数的随机样本,使用lognorm.pdf函数计算概率密度函数,使用lognorm.cdf函数计算累积分布函数。
请注意,上述代码仅为示例,实际使用时需要根据具体需求调整参数值和样本大小。
#### 引用[.reference_title]
- *1* *2* *3* [Lognormal Distribution对数正态分布](https://blog.csdn.net/weixin_39964869/article/details/111988326)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item]
[ .reference_list ]
阅读全文
相关推荐

















