请给我完整代码:掌握卷积神经网络的设计原理,掌握卷积神经网络的使用方法,使用PyTorch编程框架实现VGG19网络,并在VGG19网络上实现图像分类。 1.使用PyTorch搭建VGG19网络。 2.进行模型训练,并实现图像分类。
时间: 2024-12-22 14:31:58 浏览: 25
以下是使用PyTorch实现VGG19网络并进行图像分类的简单代码示例。请注意,为了运行此代码,你需要安装PyTorch库以及其相关的数据集如ImageFolder等。这里只提供了一个基础框架:
```python
# 导入必要的库
import torch
import torchvision
import torchvision.transforms as transforms
from torch.utils.data import DataLoader
from torchvision.models.vgg import vgg19
from torchvision.datasets import ImageFolder
# 设定超参数
num_classes = 10 # 更改为你需要分类的类别数
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# 数据预处理
transform = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
# 加载数据集
dataset = ImageFolder(root='path_to_your_dataset', transform=transform)
dataloader = DataLoader(dataset, batch_size=32, shuffle=True)
# 初始化VGG19模型,去掉最后的全连接层(因为我们将在适当位置添加自定义分类器)
vgg19_model = vgg19(pretrained=True).features
vgg19_model.eval()
for param in vgg19_model.parameters():
param.requires_grad = False
# 添加自定义分类器
classifier = torch.nn.Sequential(
torch.nn.Linear(vgg19_model.output_features, num_classes),
torch.nn.ReLU(),
torch.nn.LogSoftmax(dim=1)
)
vgg19_model.classifier = classifier
# 将模型移动到设备
vgg19_model.to(device)
# 定义损失函数和优化器
criterion = torch.nn.NLLLoss()
optimizer = torch.optim.Adam(vgg19_model.classifier.parameters(), lr=0.001)
# 训练过程
num_epochs = 10
for epoch in range(num_epochs):
for images, labels in dataloader:
images, labels = images.to(device), labels.to(device)
# 前向传播
logps = vgg19_model(images)
loss = criterion(logps, labels)
# 反向传播和优化
optimizer.zero_grad()
loss.backward()
optimizer.step()
# 打印进度信息
if (epoch + 1) % 5 == 0:
print(f"Epoch {epoch+1}/{num_epochs}, Loss: {loss.item():.4f}")
# 测试
with torch.no_grad():
test_dataset = ImageFolder('path_to_test_dataset', transform=transform)
test_dataloader = DataLoader(test_dataset, batch_size=32, shuffle=False)
correct = 0
total = 0
for images, labels in test_dataloader:
images, labels = images.to(device), labels.to(device)
outputs = vgg19_model(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print(f"Test Accuracy of the model on the 10000 test images: {100 * correct / total}%")
```
阅读全文