pyspark推荐系统
时间: 2023-07-26 18:05:12 浏览: 99
PySpark中的推荐系统模块是pyspark.ml.recommendation。这个模块提供了使用ALS(交替最小二乘)算法的推荐系统功能。你可以在官方文档中找到更多关于这个模块的信息,链接是:api/python/pyspark.ml.html#module-pyspark.ml.recommendation。\[1\]
要在终端中使用PySpark的推荐系统模块,你可以按照以下步骤准备数据:
1. 进入到你的Python工作目录,可以使用命令:cd ~/pythonwork/ipynotebook。
2. 输入以下命令来启动PySpark并设置相关参数:
PYSPARK_DRIVER_PYTHON=ipython PYSPARK_DRIVER_PYTHON_OPTS="notebook" HADOOP_CONF_IR=/usr/local/hadoop/etc/hadoop MASTER=yarn-client pyspark。
3. 准备好你的数据。\[2\]
如果你想在PySpark中使用推荐系统模块进行筛选操作,你可以使用filter函数来筛选出包含特定关键词的行。下面是一个示例代码:
```
lines = sc.parallelize(\['Spark is very fast', 'My name is Li Lei'\])
# 筛选出含有“Spark”的行,操作为并行
linesWithSpark = lines.filter(lambda line: "Spark" in line)
# 每行并行打印
linesWithSpark.foreach(print)
# 输出结果:Spark is very fast
```
这段代码会筛选出包含"Spark"关键词的行,并将结果打印出来。\[3\]
#### 引用[.reference_title]
- *1* [PySpark-推荐系统-RecommenderSystem](https://blog.csdn.net/geek6/article/details/104274739)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item]
- *2* [基于Python Spark的推荐系统](https://blog.csdn.net/weixin_40170902/article/details/82585607)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item]
- *3* [PySpark基本入门(附python代码示例)](https://blog.csdn.net/weixin_54707168/article/details/122757247)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item]
[ .reference_list ]
阅读全文