帮我构建一个pytorch框架下的脉冲神经网络,用它来处理MNIST数据集,并输出准确率
时间: 2024-09-24 21:31:19 浏览: 51
PyTorch构建分类网络模型(Mnist数据集,全连接神经网络)
在PyTorch框架下构建一个脉冲神经网络(PulseCNN)来处理MNIST数据集,首先需要安装必要的库,如torch、torchvision等。脉冲神经网络通常包含卷积层、激活函数(例如脉冲激活)、池化层以及全连接层。以下是一个简单的示例代码:
```python
import torch
import torch.nn as nn
import torchvision
import torchvision.transforms as transforms
# 数据预处理
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,))])
train_dataset = torchvision.datasets.MNIST(root='./data', train=True, download=True, transform=transform)
test_dataset = torchvision.datasets.MNIST(root='./data', train=False, download=True, transform=transform)
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=64, shuffle=True)
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=64, shuffle=False)
class PulseCNN(nn.Module):
def __init__(self):
super(PulseCNN, self).__init__()
self.conv1 = nn.Conv2d(1, 8, kernel_size=3, stride=1, padding=1) # 输入通道数为1(灰度图像)
self.pulse_layer = nn.PReLU() # 使用PReLU作为脉冲激活层
self.pool = nn.MaxPool2d(kernel_size=2, stride=2)
self.fc1 = nn.Linear(8 * 10 * 10, 128) # 全连接层
self.fc2 = nn.Linear(128, 10) # 输出层,对应MNIST的10个类别
def forward(self, x):
x = self.conv1(x)
x = self.pulse_layer(x)
x = self.pool(x)
x = x.view(-1, 8 * 10 * 10) # reshape以便于全连接层处理
x = self.fc1(x)
x = self.fc2(x)
return x
model = PulseCNN()
criterion = nn.CrossEntropyLoss() # 损失函数
optimizer = torch.optim.Adam(model.parameters(), lr=0.001) # 使用Adam优化器
def train(model, train_loader, criterion, optimizer, epoch):
model.train()
for i, (images, labels) in enumerate(train_loader):
images = images.to(device)
labels = labels.to(device)
optimizer.zero_grad()
outputs = model(images)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
if (i+1) % 100 == 0:
print(f"Epoch {epoch+1}, Step {i+1}/{len(train_loader)}, Loss: {loss.item():.4f}")
def test(model, test_loader):
model.eval()
correct = 0
with torch.no_grad():
for images, labels in test_loader:
images = images.to(device)
labels = labels.to(device)
outputs = model(images)
_, predicted = torch.max(outputs.data, 1)
correct += (predicted == labels).sum().item()
accuracy = correct / len(test_loader.dataset)
print(f"Test Accuracy: {accuracy:.4f}")
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model.to(device)
for epoch in range(10): # 训练10个epochs
train(model, train_loader, criterion, optimizer, epoch)
test(model, test_loader)
```
在这个例子中,我们首先加载并预处理MNIST数据,然后定义了脉冲神经网络模型结构。训练部分通过反向传播更新权重,测试部分计算并输出模型在测试集上的准确率。
阅读全文