如何利用pytorch框架和mnist数据集快速搭建bp神经网络? 
时间: 2023-03-07 20:53:33 浏览: 56
可以使用PyTorch框架搭建基于MNIST数据集的BP神经网络。首先,需要准备MNIST数据集,然后使用PyTorch提供的神经网络模块,编写代码实现BP神经网络的搭建,最后使用训练好的模型进行预测。
相关问题
使用pytorch训练mnist数据集上的卷积神经网络
使用PyTorch训练MNIST数据集上的卷积神经网络可以按照以下步骤进行:
1. 导入必要的库和数据集
```python
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision.datasets as datasets
import torchvision.transforms as transforms
# 加载MNIST数据集
train_dataset = datasets.MNIST(root='./data', train=True, transform=transforms.ToTensor(), download=True)
test_dataset = datasets.MNIST(root='./data', train=False, transform=transforms.ToTensor(), download=True)
# 定义批次大小
batch_size = 64
# 创建数据加载器
train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True)
test_loader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=False)
```
2. 定义卷积神经网络模型
```python
class ConvNet(nn.Module):
def __init__(self):
super(ConvNet, self).__init__()
self.conv1 = nn.Conv2d(1, 32, kernel_size=3, stride=1, padding=1)
self.relu1 = nn.ReLU()
self.conv2 = nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1)
self.relu2 = nn.ReLU()
self.pool = nn.MaxPool2d(kernel_size=2, stride=2)
self.fc1 = nn.Linear(64 * 7 * 7, 128)
self.relu3 = nn.ReLU()
self.fc2 = nn.Linear(128, 10)
def forward(self, x):
out = self.conv1(x)
out = self.relu1(out)
out = self.conv2(out)
out = self.relu2(out)
out = self.pool(out)
out = out.view(out.size(), -1)
out = self.fc1(out)
out = self.relu3(out)
out = self.fc2(out)
return out
# 创建模型实例
model = ConvNet()
```
3. 定义损失函数和优化器
```python
# 定义损失函数
criterion = nn.CrossEntropyLoss()
# 定义优化器
optimizer = optim.Adam(model.parameters(), lr=.001)
```
4. 训练模型
```python
# 定义训练函数
def train(model, train_loader, criterion, optimizer, num_epochs):
for epoch in range(num_epochs):
for i, (images, labels) in enumerate(train_loader):
# 前向传播
outputs = model(images)
loss = criterion(outputs, labels)
# 反向传播和优化
optimizer.zero_grad()
loss.backward()
optimizer.step()
# 每100个批次打印一次训练信息
if (i+1) % 100 == :
print('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}'.format(epoch+1, num_epochs, i+1, len(train_loader), loss.item()))
# 开始训练
num_epochs = 5
train(model, train_loader, criterion, optimizer, num_epochs)
```
5. 测试模型
```python
# 定义测试函数
def test(model, test_loader):
# 测试模式
model.eval()
# 定义变量
correct =
total =
# 不计算梯度
with torch.no_grad():
for images, labels in test_loader:
# 前向传播
outputs = model(images)
_, predicted = torch.max(outputs.data, 1)
# 统计正确率
total += labels.size()
correct += (predicted == labels).sum().item()
# 输出测试结果
print('Accuracy of the model on the 10000 test images: {:.2f} %'.format(100 * correct / total))
# 测试模型
test(model, test_loader)
```
以上就是使用PyTorch训练MNIST数据集上的卷积神经网络的完整代码。
fashionmnist数据集_pytorch进行fashion mnist数据集分类
好的,以下是使用PyTorch对Fashion MNIST数据集进行分类的示例代码:
首先,我们需要导入必要的库和模块:
```python
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision.datasets as datasets
import torchvision.transforms as transforms
from torch.utils.data import DataLoader
```
然后,我们需要下载并加载数据集。Fashion MNIST数据集可以通过以下方式下载:
```python
train_data = datasets.FashionMNIST(
root="data",
train=True,
download=True,
transform=transforms.ToTensor()
)
test_data = datasets.FashionMNIST(
root="data",
train=False,
download=True,
transform=transforms.ToTensor()
)
```
接下来,我们需要定义一个神经网络模型。在这个例子中,我们使用了一个简单的卷积神经网络:
```python
class CNN(nn.Module):
def __init__(self):
super(CNN, self).__init__()
self.layer1 = nn.Sequential(
nn.Conv2d(1, 32, kernel_size=3, padding=1),
nn.ReLU(),
nn.MaxPool2d(kernel_size=2, stride=2)
)
self.layer2 = nn.Sequential(
nn.Conv2d(32, 64, kernel_size=3, padding=1),
nn.ReLU(),
nn.MaxPool2d(kernel_size=2, stride=2)
)
self.fc = nn.Sequential(
nn.Linear(7 * 7 * 64, 128),
nn.ReLU(),
nn.Linear(128, 10)
)
def forward(self, x):
out = self.layer1(x)
out = self.layer2(out)
out = out.reshape(out.size(0), -1)
out = self.fc(out)
return out
```
然后,我们需要定义损失函数和优化器:
```python
model = CNN()
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
```
最后,我们可以开始训练模型并评估其性能:
```python
train_loader = DataLoader(train_data, batch_size=100, shuffle=True)
test_loader = DataLoader(test_data, batch_size=100, shuffle=False)
for epoch in range(10):
for i, (images, labels) in enumerate(train_loader):
optimizer.zero_grad()
outputs = model(images)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
if (i + 1) % 100 == 0:
print(f"Epoch [{epoch + 1}/{10}], Step [{i + 1}/{len(train_loader)}], Loss: {loss.item():.4f}")
with torch.no_grad():
correct = 0
total = 0
for images, labels in test_loader:
outputs = model(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
accuracy = 100 * correct / total
print(f"Test Accuracy: {accuracy:.2f}%")
```
这就是使用PyTorch对Fashion MNIST数据集进行分类的示例代码。希望能对你有所帮助!
相关推荐
















