使用PyTorch手动搭建AlexNet网络进行图像分类实践代码
时间: 2024-12-18 12:15:43 浏览: 28
在PyTorch中,构建AlexNet网络是一个相对复杂的任务,因为这涉及到卷积层、池化层、全连接层以及Dropout等组件。以下是一个简单的示例,展示了如何手动实现AlexNet的基本结构:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
# AlexNet的结构定义
class AlexNet(nn.Module):
def __init__(self):
super(AlexNet, self).__init__()
# 定义卷积块(convolutional blocks)
self.conv1 = nn.Sequential(
nn.Conv2d(3, 96, kernel_size=11, stride=4, padding=2), # 输入通道数,输出通道数,kernel size, stride, padding
nn.ReLU(),
nn.MaxPool2d(kernel_size=3, stride=2) # 下采样
)
self.conv2 = nn.Sequential(
nn.Conv2d(96, 256, kernel_size=5, padding=2),
nn.ReLU(),
nn.MaxPool2d(kernel_size=3, stride=2)
)
self.conv3 = nn.Sequential(
nn.Conv2d(256, 384, kernel_size=3, padding=1),
nn.ReLU()
)
self.conv4 = nn.Sequential(
nn.Conv2d(384, 384, kernel_size=3, padding=1),
nn.ReLU()
)
self.conv5 = nn.Sequential(
nn.Conv2d(384, 256, kernel_size=3, padding=1),
nn.ReLU(),
nn.MaxPool2d(kernel_size=3, stride=2)
)
# 全连接层
self.fc1 = nn.Linear(256 * 6 * 6, 4096) # Flatten output of conv5
self.drop1 = nn.Dropout(p=0.5)
self.fc2 = nn.Linear(4096, 4096)
self.drop2 = nn.Dropout(p=0.5)
self.fc3 = nn.Linear(4096, 1000) # 输出层,假设我们有1000个类别
def forward(self, x):
x = self.conv1(x)
x = self.conv2(x)
x = self.conv3(x)
x = self.conv4(x)
x = self.conv5(x)
x = x.view(-1, 256 * 6 * 6) # Flatten the feature maps
x = self.fc1(x)
x = F.relu(x)
x = self.drop1(x)
x = self.fc2(x)
x = F.relu(x)
x = self.drop2(x)
x = self.fc3(x)
return F.log_softmax(x, dim=1) # 输出的概率分布
# 初始化并实例化模型
alexnet = AlexNet()
# 这部分用于加载数据集和设置优化器,这里简化略去
# criterion = nn.CrossEntropyLoss() # 损失函数
# optimizer = torch.optim.SGD(alexnet.parameters(), lr=0.001)
```
在这个例子中,你需要根据实际的数据集和需求调整网络结构,如输入尺寸、类别数等。训练过程则需要将`forward`方法中的数据传递给`optimizer.zero_grad()`、损失函数计算和`.step()`。
阅读全文