GJK程序matlab
时间: 2023-11-09 19:09:28 浏览: 107
GJK算法是一种用于计算两个凸多边形之间最小距离的算法,它的实现可以使用Matlab语言。以下是一个简单的Matlab实现:
```matlab
function [distance, simplex] = gjk(A, B, max_iterations)
% A和B分别是两个凸多边形的顶点集合
% max_iterations是最大迭代次数
% distance是两个凸多边形之间的最小距离
% simplex是最后一个包含原点的单纯形
% 初始化
direction = [1; 0]; % 任意方向
point_A = support(A, direction);
point_B = support(B, -direction);
simplex = [point_A, point_B];
direction = -point_B;
% 迭代
for i = 1:max_iterations
point_A = support(A, direction);
if dot(point_A, direction) < 0
distance = norm(simplex(:, end));
return;
end
simplex = [simplex, point_A];
[simplex, direction] = do_simplex(simplex);
end
distance = norm(simplex(:, end));
end
function point = support(A, direction)
% 返回A中距离方向最远的点
[~, index] = max(dot(A, direction));
point = A(:, index);
end
function [simplex, direction] = do_simplex(simplex)
% 根据simplex的大小进行不同的操作
n = size(simplex, 2);
if n == 2
[simplex, direction] = do_simplex_2(simplex);
elseif n == 3
[simplex, direction] = do_simplex_3(simplex);
else
[simplex, direction] = do_simplex_4(simplex);
end
end
function [simplex, direction] = do_simplex_2(simplex)
% 二维情况下的操作
AB = simplex(:, 2) - simplex(:, 1);
AO = -simplex(:, 1);
if dot(AB, AO) > 0
direction = cross([AB; 0], [AO; 0]);
simplex = [simplex, simplex(:, 1)];
else
simplex = simplex(:, 1);
direction = -AO;
end
end
function [simplex, direction] = do_simplex_3(simplex)
% 三维情况下的操作
AB = simplex(:, 2) - simplex(:, 1);
AC = simplex(:, 3) - simplex(:, 1);
AO = -simplex(:, 1);
ABC = cross(AB, AC);
if dot(cross(ABC, AC), AO) > 0
if dot(AC, AO) > 0
simplex = [simplex(:, 1), simplex(:, 3)];
direction = cross(cross(AC, AO), AC);
else
simplex = simplex(:, 1);
direction = -AO;
end
else
if dot(cross(AB, ABC), AO) > 0
simplex = [simplex(:, 1), simplex(:, 2)];
direction = cross(cross(AB, AO), AB);
else
simplex = [simplex(:, 1), simplex(:, 2), simplex(:, 3)];
direction = ABC;
end
end
end
function [simplex, direction] = do_simplex_4(simplex)
% 四维情况下的操作
AB = simplex(:, 2) - simplex(:, 1);
AC = simplex(:, 3) - simplex(:, 1);
AD = simplex(:, 4) - simplex(:, 1);
AO = -simplex(:, 1);
ABC = cross(AB, AC);
ACD = cross(AC, AD);
ADB = cross(AD, AB);
if dot(ABC, AO) > 0
simplex = [simplex(:, 1), simplex(:, 2), simplex(:, 3)];
direction = do_simplex_3(simplex(:, 1:3));
elseif dot(ACD, AO) > 0
simplex = [simplex(:, 1), simplex(:, 3), simplex(:, 4)];
direction = do_simplex_3(simplex(:, 1:3));
elseif dot(ADB, AO) > 0
simplex = [simplex(:, 1), simplex(:, 4), simplex(:, 2)];
direction = do_simplex_3(simplex(:, 1:3));
else
distance = dot(AO, ABC) / norm(ABC);
direction = ABC;
end
end
```
阅读全文