python plt画黑白图
时间: 2023-10-14 17:07:52 浏览: 151
你可以使用Matplotlib库中的plt.imshow()函数来画黑白图。首先,将图片转换成灰度图像,然后使用imshow()函数显示灰度图像。
下面是一个简单的示例代码:
```python
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
# 读取图片
img = mpimg.imread('image.png')
# 将图片转换成灰度图像
gray_img = img.mean(axis=2)
# 使用imshow()函数显示灰度图像
plt.imshow(gray_img, cmap='gray')
# 关闭坐标轴
plt.axis('off')
# 显示图像
plt.show()
```
相关问题
python画黑白饼图
在Python中,可以使用matplotlib库来画黑白饼图。首先,你需要导入matplotlib.pyplot模块。然后,使用plt.pie()函数来绘制饼图。在函数中,你需要传入饼图的数据和标签。数据可以是一个列表,标签可以是一个字符串列表。接下来,你可以使用plt.show()函数来显示饼图。下面是一个示例代码:
```
import matplotlib.pyplot as plt
# 饼图的数据
data = \[30, 40, 20, 10\]
# 饼图的标签
labels = \['A', 'B', 'C', 'D'\]
# 绘制饼图
plt.pie(data, labels=labels)
# 显示饼图
plt.show()
```
这段代码会绘制一个简单的黑白饼图,其中data列表中的数值表示每个扇区的大小,labels列表中的字符串表示每个扇区的标签。你可以根据自己的需求修改数据和标签。
#### 引用[.reference_title]
- *1* *2* [python画像素图](https://blog.csdn.net/weixin_39693662/article/details/110376092)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insert_down1,239^v3^insert_chatgpt"}} ] [.reference_item]
- *3* [Python——教你画朵太阳花](https://blog.csdn.net/weixin_39604092/article/details/110979504)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insert_down1,239^v3^insert_chatgpt"}} ] [.reference_item]
[ .reference_list ]
python将黑白图片彩色化
黑白图片彩色化是一项非常有趣的任务,最近使用深度学习技术实现此任务的研究成果也受到了广泛关注。在Python中,你可以使用深度学习框架如TensorFlow或PyTorch来实现此任务。
以下是使用PyTorch实现黑白图片彩色化的基本步骤:
1. 导入必要的库
```python
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision.transforms as transforms
from torch.utils.data import DataLoader
from torchvision.datasets import CIFAR10
from tqdm import tqdm
```
2. 定义模型
定义一个简单的卷积神经网络模型,例如:
```python
class ColorizationNet(nn.Module):
def __init__(self):
super(ColorizationNet, self).__init__()
self.conv1 = nn.Conv2d(in_channels=1, out_channels=8, kernel_size=3, stride=2, padding=1)
self.conv2 = nn.Conv2d(in_channels=8, out_channels=16, kernel_size=3, stride=2, padding=1)
self.conv3 = nn.Conv2d(in_channels=16, out_channels=32, kernel_size=3, stride=2, padding=1)
self.conv4 = nn.Conv2d(in_channels=32, out_channels=64, kernel_size=3, stride=2, padding=1)
self.conv5 = nn.Conv2d(in_channels=64, out_channels=128, kernel_size=3, stride=2, padding=1)
self.conv6 = nn.Conv2d(in_channels=128, out_channels=256, kernel_size=3, stride=2, padding=1)
self.conv7 = nn.Conv2d(in_channels=256, out_channels=512, kernel_size=3, stride=2, padding=1)
self.conv8 = nn.Conv2d(in_channels=512, out_channels=512, kernel_size=3, stride=2, padding=1)
self.conv9 = nn.Conv2d(in_channels=512, out_channels=512, kernel_size=3, stride=2, padding=1)
self.deconv1 = nn.ConvTranspose2d(in_channels=512, out_channels=512, kernel_size=4, stride=2, padding=1)
self.deconv2 = nn.ConvTranspose2d(in_channels=512, out_channels=512, kernel_size=4, stride=2, padding=1)
self.deconv3 = nn.ConvTranspose2d(in_channels=512, out_channels=256, kernel_size=4, stride=2, padding=1)
self.deconv4 = nn.ConvTranspose2d(in_channels=256, out_channels=128, kernel_size=4, stride=2, padding=1)
self.deconv5 = nn.ConvTranspose2d(in_channels=128, out_channels=64, kernel_size=4, stride=2, padding=1)
self.deconv6 = nn.ConvTranspose2d(in_channels=64, out_channels=32, kernel_size=4, stride=2, padding=1)
self.deconv7 = nn.ConvTranspose2d(in_channels=32, out_channels=16, kernel_size=4, stride=2, padding=1)
self.deconv8 = nn.ConvTranspose2d(in_channels=16, out_channels=2, kernel_size=4, stride=2, padding=1)
self.relu = nn.ReLU()
self.tanh = nn.Tanh()
def forward(self, x):
x = self.relu(self.conv1(x))
x = self.relu(self.conv2(x))
x = self.relu(self.conv3(x))
x = self.relu(self.conv4(x))
x = self.relu(self.conv5(x))
x = self.relu(self.conv6(x))
x = self.relu(self.conv7(x))
x = self.relu(self.conv8(x))
x = self.relu(self.conv9(x))
x = self.relu(self.deconv1(x))
x = self.relu(self.deconv2(x))
x = self.relu(self.deconv3(x))
x = self.relu(self.deconv4(x))
x = self.relu(self.deconv5(x))
x = self.relu(self.deconv6(x))
x = self.relu(self.deconv7(x))
x = self.tanh(self.deconv8(x))
return x
```
3. 定义损失函数和优化器
```python
criterion = nn.MSELoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
```
4. 加载数据
使用CIFAR10数据集作为示例数据集,其中包含了50,000张训练集和10,000张测试集的彩色图片,每张图片的大小为32x32像素。
```python
# 数据预处理
transform = transforms.Compose([
transforms.Resize((32, 32)),
transforms.Grayscale(num_output_channels=1),
transforms.ToTensor()
])
train_set = CIFAR10(root='./data', train=True, transform=transform, download=True)
test_set = CIFAR10(root='./data', train=False, transform=transform, download=True)
train_loader = DataLoader(train_set, batch_size=64, shuffle=True)
test_loader = DataLoader(test_set, batch_size=64, shuffle=False)
```
5. 训练模型
```python
# 训练
for epoch in range(100):
running_loss = 0.0
for i, data in tqdm(enumerate(train_loader, 0)):
inputs, _ = data
optimizer.zero_grad()
# 转换为黑白图片
gray_inputs = inputs[:, 0, :, :].unsqueeze(1)
# 前向传播
outputs = model(gray_inputs)
# 计算损失
loss = criterion(outputs, inputs)
# 反向传播和优化
loss.backward()
optimizer.step()
# 统计损失
running_loss += loss.item()
# 打印每个epoch的损失
print(f'Epoch {epoch + 1}, Loss: {running_loss / len(train_loader)}')
```
6. 测试模型
```python
# 测试
with torch.no_grad():
model.eval()
test_loss = 0.0
for i, data in tqdm(enumerate(test_loader, 0)):
inputs, _ = data
# 转换为黑白图片
gray_inputs = inputs[:, 0, :, :].unsqueeze(1)
# 前向传播
outputs = model(gray_inputs)
# 计算损失
loss = criterion(outputs, inputs)
# 统计损失
test_loss += loss.item()
# 保存一些样本
if i == 0:
inputs = inputs.numpy()
outputs = outputs.numpy()
for j in range(8):
img_in = inputs[j, 0, :, :]
img_out = outputs[j, :, :, :]
img_out = np.transpose(img_out, (1, 2, 0))
plt.subplot(2, 8, j + 1)
plt.imshow(img_in, cmap='gray')
plt.subplot(2, 8, j + 9)
plt.imshow(img_out)
# 打印测试集上的平均损失
print(f'Test Loss: {test_loss / len(test_loader)}')
```
通过以上步骤,你就可以在Python中使用PyTorch实现黑白图片彩色化。
阅读全文