MATLAB实现以下步骤 步骤一:% 加载原始图像I0(x,y)已经加载,设置参数k和T 我们考虑一维情况。设I(x)为I0(x,y)原始图像128*128的一行。首先,我们生成k个沿x方向有亚像素位移的图像副本,每个副本都有一个特定的亚像素位移∆xi, Ii=F-1{I(fx)exp(j2πfx∆x i)},式中F-1表示傅立叶反变换,∆x i = [(i−1)T/2k]−T/4, i = 1,2,3,…, 其次,我们选择一个合适的振荡测度。一维局部变分是一种有效且高效的振荡测度。考虑左(−ve)侧变化和右(+ve)侧变化,两个局部变异V−andV+定义为:V-(x) = |I(x) - I(x- [T/2])|,V+(x) = |I(x) - I(x+[T/2])|,其中[]表示舍入运算。第三,我们寻找最优移位∆x,它应该使邻域的振荡最小化, ∆x=argmin{min{V+(x+∆x i),V-(x+∆x i)}}.有两个最小算子,外部是求局部变化总体最小值对应的∆x,内部是判断总体最小值是来自左边还是右边。还请注意,最优亚像素位移∆x是与像素相关的,即∆x =∆x(x)。因此,I(x)中的每一个像素都有其最优亚像素位移,以最小化局部变化。在得到的图像中,沿x方向的环形伪影被消除I1(x,y),沿y方向的伪影保留。 步骤二:以I1(x,y)作为输入,在y方向重复步骤1。得到的图像记为I2(x,y)
时间: 2024-04-23 18:27:50 浏览: 96
以下是用MATLAB实现这两个步骤的代码:
步骤一:
```matlab
% 加载原始图像I0(x,y)
load('I0.mat'); % 假设I0已经保存在I0.mat文件中
% 设置参数k和T
k = 4; % 生成副本的个数
T = 2; % 亚像素位移的步长
% 将I0(x,y)转换为一维向量I(x)
I = I0(:);
% 生成k个沿x方向有亚像素位移的图像副本
Ii = zeros(length(I), k);
for i = 1:k
delta_xi = ((i-1)*T/(2*k)) - T/4;
F_inv = ifftshift(exp(1j*2*pi*delta_xi*(0:length(I)-1)'));
Ii(:,i) = ifft(F_inv .* fft(I));
end
% 计算局部变异V-和V+
V_minus = abs(I - circshift(I, [0, -round(T/2)]));
V_plus = abs(I - circshift(I, [0, round(T/2)]));
% 寻找最优移位∆x
delta_x = zeros(length(I), 1);
for x = 1:length(I)
[~, min_idx] = min([V_plus(x+round(T/2):end), V_plus(1:x+round(T/2)-1)]);
min_idx = min_idx + x + round(T/2) - 1;
[~, min_idx2] = min([V_minus(x+round(T/2):end), V_minus(1:x+round(T/2)-1)]);
min_idx2 = min_idx2 + x + round(T/2) - 1;
if V_plus(min_idx) < V_minus(min_idx2)
delta_x(x) = (min_idx - x) * T / (2*k);
else
delta_x(x) = (min_idx2 - x) * T / (2*k);
end
end
% 生成消除环形伪影的图像I1(x, y)
I1 = zeros(size(I0));
for y = 1:size(I0, 2)
F_inv = ifftshift(exp(1j*2*pi*delta_x*(0:length(I)-1)));
I1(:, y) = ifft(F_inv .* fft(I0(:, y)));
end
```
步骤二:
```matlab
% 以I1(x, y)作为输入,在y方向重复步骤1
I2 = zeros(size(I1));
for x = 1:size(I1, 1)
I = I1(x, :);
% 生成k个沿y方向有亚像素位移的图像副本
Ii = zeros(size(I), k);
for i = 1:k
delta_yi = ((i-1)*T/(2*k)) - T/4;
F_inv = ifftshift(exp(1j*2*pi*delta_yi*(0:length(I)-1)));
Ii(:,i) = ifft(F_inv .* fft(I));
end
% 计算局部变异V-和V+
V_minus = abs(I - circshift(I, [-round(T/2), 0]));
V_plus = abs(I - circshift(I, [round(T/2), 0]));
% 寻找最优移位∆y
delta_y = zeros(length(I), 1);
for y = 1:length(I)
[~, min_idx] = min([V_plus(y+round(T/2):end), V_plus(1:y+round(T/2)-1)]);
min_idx = min_idx + y + round(T/2) - 1;
[~, min_idx2] = min([V_minus(y+round(T/2):end), V_minus(1:y+round(T/2)-1)]);
min_idx2 = min_idx2 + y + round(T/2) - 1;
if V_plus(min_idx) < V_minus(min_idx2)
delta_y(y) = (min_idx - y) * T / (2*k);
else
delta_y(y) = (min_idx2 - y) * T / (2*k);
end
end
% 生成消除环形伪影的图像I2(x, y)
F_inv = ifftshift(exp(1j*2*pi*delta_y*(0:length(I)-1)));
I2(x, :) = ifft(F_inv .* fft(I1(x, :)));
end
```
请注意,以上代码仅供参考,具体实现可能需要根据实际情况进行调整和修改。另外,假设输入图像I0已经保存在名为"I0.mat"的MAT文件中,你需要根据实际情况修改加载图像的部分代码。
阅读全文