age_box=sns.boxplot(x="Severe Wasting",data=data)
时间: 2024-04-12 19:33:14 浏览: 189
这段代码使用了Seaborn库的boxplot函数创建了一个箱线图。让我来解释一下您的代码:
- `age_box = sns.boxplot(x="Severe Wasting", data=data)`:创建了一个箱线图,其中`x="Severe Wasting"`指定了要绘制的数据在x轴上的位置,`data=data`指定了要使用的数据集。
在这里,您需要确保已经导入了Seaborn库,并且已经正确加载了数据。如果遇到任何错误,请提供详细的错误消息以便我能够更好地帮助您解决问题。
相关问题
import pandas as pd from pyecharts import options as opts from pyecharts.charts import Boxplot, Line, Grid # 读取数据 df = pd.read_excel('200马力拖拉机明细.xlsx') # 创建DataFrame df = pd.DataFrame({ 'FactoryName': df['FactoryName'], 'JiJXH': df['JiJXH'], 'sale': df['sale'] }) # 将FactoryName和JiJXH合并为一列 df['FactoryName-JiJXH'] = df['FactoryName'] + '-' + df['JiJXH'].astype(str) # 对FactoryName-JiJXH进行分组 grouped = df.groupby('FactoryName-JiJXH') # 绘制箱线图 box = Boxplot() box_data = [] for name, group in grouped: box_data.append([round(i, 2) for i in group['sale'].tolist()]) box.add_xaxis([name]) box.add_yaxis('', box.prepare_data(box_data), tooltip_opts=opts.TooltipOpts(trigger='axis', axis_pointer_type='cross')) box.set_global_opts( title_opts=opts.TitleOpts(title='Sale Boxplot', subtitle=''), xaxis_opts=opts.AxisOpts( axislabel_opts=opts.LabelOpts(interval=0, formatter='{value|换行}'.replace('换行', '\n')) ) ) box.set_series_opts(label_opts=opts.LabelOpts(is_show=False)) # 绘制折线图 line = Line() for name, group in grouped: line.add_xaxis([name]) line.add_yaxis('Median', [round(group['sale'].median(), 2)], label_opts=opts.LabelOpts(is_show=False)) line.set_global_opts( title_opts=opts.TitleOpts(title='Sale Median Line', subtitle=''), xaxis_opts=opts.AxisOpts( axislabel_opts=opts.LabelOpts(interval=0, formatter='{value|换行}'.replace('换行', '\n')) ) ) # 合并图表 grid = Grid( init_opts=opts.InitOpts( width='1400px', height='800px', page_title='Boxplot and Median Line', theme='white' ) ) grid.add(box, grid_opts=opts.GridOpts(pos_left='10%', pos_right='10%')) grid.add(line, grid_opts=opts.GridOpts(pos_left='10%', pos_right='10%')) grid.render('boxplot_and_line.html') 提示list index out of range
这个错误通常是由于没有找到所需的列名或行数不够导致的。请确保以下两点:
1. 文件路径正确,确保文件可以正确读取
2. DataFrame 中包含所需的列名
您可以通过在代码中添加一些 `print` 语句来进行调试,以找出问题所在。例如,在 `df` 的创建后,您可以添加下面这行代码来查看 DataFrame 中是否包含所需的列名:
```
print(df.columns)
```
或者您可以在读取 excel 文件之后添加下面这行代码来查看 DataFrame 的行数:
```
print(df.shape[0])
```
希望这可以帮助您找出问题所在。
plt.boxplot(x=train_data.values,labels=train_data.columns) 3 plt.hlines([-7.5, 7.5], 0, 40, colors='r') 4 plt.show() 5 6 train_data = train_data[train_data['V9']>-7.5] 7 train_data.describe() 8 9 from sklearn import preprocessing 10 11 features_columns = [col for col in train_data.columns if col not in ['target']] 12 13 min_max_scaler = preprocessing.MinMaxScaler() 14 15 min_max_scaler = min_max_scaler.fit(train_data[features_columns]) 16 17 train_data_scaler = min_max_scaler.transform(train_data[features_columns]) 18 test_data_scaler = min_max_scaler.transform(test_data[features_columns]) 19 20 train_data_scaler = pd.DataFrame(train_data_scaler) 21 train_data_scaler.columns = features_columns 22 23 test_data_scaler = pd.DataFrame(test_data_scaler) 24 test_data_scaler.columns = features_columns 25 26 train_data_scaler['target'] = train_data['target'] 27 28 train_data 29 30 mcorr=mcorr.abs() 31 numerical_corr=mcorr[mcorr['target']>0.1]['target'] 32 print(numerical_corr.sort_values(ascending=False))解释每一行代码的意思
好的,我来解释每一行代码的意思:
1. `plt.boxplot(x=train_data.values,labels=train_data.columns)`: 绘制箱线图,用于检测是否存在异常值;
2. `plt.hlines([-7.5, 7.5], 0, 40, colors='r')`: 在箱线图上绘制两条水平线,用于标记异常值的阈值;
3. `train_data = train_data[train_data['V9']>-7.5]`: 去除训练数据中V9列中小于-7.5的异常值;
4. `train_data.describe()`: 输出训练数据的统计信息,包括均值、标准差、最小值、最大值等;
5. `from sklearn import preprocessing`: 导入preprocessing模块,用于数据预处理;
6. `features_columns = [col for col in train_data.columns if col not in ['target']]`: 提取除了目标变量之外的特征列,存储在features_columns变量中;
7. `min_max_scaler = preprocessing.MinMaxScaler()`: 创建MinMaxScaler对象,用于对特征数据进行归一化处理;
8. `min_max_scaler = min_max_scaler.fit(train_data[features_columns])`: 对MinMaxScaler对象进行拟合,计算出归一化所需的最大值和最小值;
9. `train_data_scaler = min_max_scaler.transform(train_data[features_columns])`: 对训练数据的特征列进行归一化处理;
10. `test_data_scaler = min_max_scaler.transform(test_data[features_columns])`: 对测试数据的特征列进行归一化处理;
11. `train_data_scaler = pd.DataFrame(train_data_scaler)`: 将归一化后的训练数据特征列转换成DataFrame格式;
12. `train_data_scaler.columns = features_columns`: 给训练数据的特征列添加列名;
13. `test_data_scaler = pd.DataFrame(test_data_scaler)`: 将归一化后的测试数据特征列转换成DataFrame格式;
14. `test_data_scaler.columns = features_columns`: 给测试数据的特征列添加列名;
15. `train_data_scaler['target'] = train_data['target']`: 将训练数据的目标变量添加到归一化后的训练数据中;
16. `train_data`: 输出训练数据的内容;
17. `mcorr=mcorr.abs()`: 计算特征之间的相关性矩阵,并对矩阵中的元素取绝对值;
18. `numerical_corr=mcorr[mcorr['target']>0.1]['target']`: 筛选出与目标变量相关性大于0.1的特征;
19. `print(numerical_corr.sort_values(ascending=False))`: 输出筛选后的特征相关性,按照相关性大小降序排列;
20. `index0 = numerical_corr.sort_values(ascending=False).index`: 获取筛选后的特征名字,并存储在index0变量中;
21. `print(train_data_scaler[index0].corr('spearman'))`: 计算筛选后的特征之间的Spearman相关系数;
22. `new_numerical=['V0', 'V2', 'V3', 'V4', 'V5', 'V6', 'V10','V11', 'V13', 'V15', 'V16', 'V18', 'V19', 'V20', 'V22','V24','V30', 'V31', 'V37']`: 将相关性较高的特征名字存储在new_numerical变量中;
23. `X=np.matrix(train_data_scaler[new_numerical])`: 将训练数据中的new_numerical列转换为矩阵格式,存储在X变量中;
24. `VIF_list=[variance_inflation_factor(X, i) for i in range(X.shape[1])]`: 计算new_numerical列之间的VIF值,存储在VIF_list变量中;
25. `VIF_list`: 输出VIF_list变量的值;
26. `pca = PCA(n_components=0.9)`: 创建PCA对象,并设置保留90%的方差;
27. `new_train_pca_90 = pca.fit_transform(train_data_scaler.iloc[:,0:-1])`: 对训练数据进行PCA降维,并保留90%的方差;
28. `new_test_pca_90 = pca.transform(test_data_scaler)`: 对测试数据进行PCA降维,并保留90%的方差;
29. `new_train_pca_90 = pd.DataFrame(new_train_pca_90)`: 将降维后的训练数据转换为DataFrame格式;
30. `new_test_pca_90 = pd.DataFrame(new_test_pca_90)`: 将降维后的测试数据转换为DataFrame格式;
31. `new_train_pca_90['target'] = train_data_scaler['target']`: 将训练数据的目标变量添加到降维后的训练数据中;
32. `new_train_pca_90.describe()`: 输出降维后的训练数据的统计信息,包括均值、标准差、最小值、最大值等。
阅读全文