冒泡排序、选择排序、插入排序、快速排序、归并排序、堆排序、希尔排序、计数排序简单给出上述中每个排序算法的python代码

时间: 2024-01-29 15:03:04 浏览: 94
当然可以,以下是对这些排序算法的Python实现: 1. 冒泡排序(Bubble Sort): ```python def bubble_sort(arr): n = len(arr) for i in range(n): for j in range(0, n - i - 1): if arr[j] > arr[j + 1]: arr[j], arr[j + 1] = arr[j + 1], arr[j] return arr ``` 2. 选择排序(Selection Sort): ```python def selection_sort(arr): for i in range(len(arr)): min_idx = i for j in range(i+1, len(arr)): if arr[min_idx] > arr[j]: min_idx = j arr[i],
相关问题

请用C语言分别实现 冒泡排序 选择排序 插入排序 希尔排序 快速排序 归并排序 堆排序 计数排序 桶排序 基数排序

好的,以下是C语言实现各种排序方法的代码示例: 1. 冒泡排序 ``` c void bubble_sort(int arr[], int n) { for (int i = 0; i < n - 1; i++) { for (int j = 0; j < n - i - 1; j++) { if (arr[j] > arr[j + 1]) { int temp = arr[j]; arr[j] = arr[j + 1]; arr[j + 1] = temp; } } } } ``` 2. 选择排序 ``` c void selection_sort(int arr[], int n) { for (int i = 0; i < n - 1; i++) { int min_index = i; for (int j = i + 1; j < n; j++) { if (arr[j] < arr[min_index]) { min_index = j; } } int temp = arr[i]; arr[i] = arr[min_index]; arr[min_index] = temp; } } ``` 3. 插入排序 ``` c void insertion_sort(int arr[], int n) { for (int i = 1; i < n; i++) { int key = arr[i]; int j = i - 1; while (j >= 0 && arr[j] > key) { arr[j + 1] = arr[j]; j--; } arr[j + 1] = key; } } ``` 4. 希尔排序 ``` c void shell_sort(int arr[], int n) { for (int gap = n / 2; gap > 0; gap /= 2) { for (int i = gap; i < n; i++) { int temp = arr[i]; int j; for (j = i; j >= gap && arr[j - gap] > temp; j -= gap) { arr[j] = arr[j - gap]; } arr[j] = temp; } } } ``` 5. 快速排序 ``` c void quick_sort(int arr[], int left, int right) { if (left < right) { int pivot = partition(arr, left, right); quick_sort(arr, left, pivot - 1); quick_sort(arr, pivot + 1, right); } } int partition(int arr[], int left, int right) { int pivot = arr[right]; int i = left - 1; for (int j = left; j < right; j++) { if (arr[j] < pivot) { i++; int temp = arr[i]; arr[i] = arr[j]; arr[j] = temp; } } int temp = arr[i + 1]; arr[i + 1] = arr[right]; arr[right] = temp; return i + 1; } ``` 6. 归并排序 ``` c void merge_sort(int arr[], int left, int right) { if (left < right) { int mid = left + (right - left) / 2; merge_sort(arr, left, mid); merge_sort(arr, mid + 1, right); merge(arr, left, mid, right); } } void merge(int arr[], int left, int mid, int right) { int i = left, j = mid + 1, k = 0; int temp[right - left + 1]; while (i <= mid && j <= right) { if (arr[i] < arr[j]) { temp[k++] = arr[i++]; } else { temp[k++] = arr[j++]; } } while (i <= mid) { temp[k++] = arr[i++]; } while (j <= right) { temp[k++] = arr[j++]; } for (int m = left, n = 0; m <= right; m++, n++) { arr[m] = temp[n]; } } ``` 7. 堆排序 ``` c void heap_sort(int arr[], int n) { for (int i = n / 2 - 1; i >= 0; i--) { heapify(arr, n, i); } for (int i = n - 1; i > 0; i--) { int temp = arr[0]; arr[0] = arr[i]; arr[i] = temp; heapify(arr, i, 0); } } void heapify(int arr[], int n, int i) { int largest = i; int left = 2 * i + 1; int right = 2 * i + 2; if (left < n && arr[left] > arr[largest]) { largest = left; } if (right < n && arr[right] > arr[largest]) { largest = right; } if (largest != i) { int temp = arr[i]; arr[i] = arr[largest]; arr[largest] = temp; heapify(arr, n, largest); } } ``` 8. 计数排序 ``` c void counting_sort(int arr[], int n) { int max = arr[0], min = arr[0]; for (int i = 1; i < n; i++) { if (arr[i] > max) { max = arr[i]; } if (arr[i] < min) { min = arr[i]; } } int count[max - min + 1]; memset(count, 0, sizeof(count)); for (int i = 0; i < n; i++) { count[arr[i] - min]++; } for (int i = 1; i < max - min + 1; i++) { count[i] += count[i - 1]; } int temp[n]; for (int i = n - 1; i >= 0; i--) { temp[--count[arr[i] - min]] = arr[i]; } for (int i = 0; i < n; i++) { arr[i] = temp[i]; } } ``` 9. 桶排序 ``` c void bucket_sort(int arr[], int n) { int max = arr[0], min = arr[0]; for (int i = 1; i < n; i++) { if (arr[i] > max) { max = arr[i]; } if (arr[i] < min) { min = arr[i]; } } int bucket_num = (max - min) / n + 1; int bucket[bucket_num][n]; int bucket_count[bucket_num]; memset(bucket_count, 0, sizeof(bucket_count)); for (int i = 0; i < n; i++) { int index = (arr[i] - min) / n; bucket[index][bucket_count[index]] = arr[i]; bucket_count[index]++; } int k = 0; for (int i = 0; i < bucket_num; i++) { if (bucket_count[i] > 0) { insertion_sort(bucket[i], bucket_count[i]); for (int j = 0; j < bucket_count[i]; j++) { arr[k++] = bucket[i][j]; } } } } ``` 10. 基数排序 ``` c void radix_sort(int arr[], int n) { int max = arr[0]; for (int i = 1; i < n; i++) { if (arr[i] > max) { max = arr[i]; } } for (int exp = 1; max / exp > 0; exp *= 10) { counting_sort_by_digit(arr, n, exp); } } void counting_sort_by_digit(int arr[], int n, int exp) { int count[10]; memset(count, 0, sizeof(count)); for (int i = 0; i < n; i++) { count[(arr[i] / exp) % 10]++; } for (int i = 1; i < 10; i++) { count[i] += count[i - 1]; } int temp[n]; for (int i = n - 1; i >= 0; i--) { temp[--count[(arr[i] / exp) % 10]] = arr[i]; } for (int i = 0; i < n; i++) { arr[i] = temp[i]; } } ``` 以上是C语言实现各种排序方法的代码示例,可以根据具体的需求进行选择。

关于学习选择排序、冒泡排序、插入排序、归并排序、快速排序、堆排序、计数排序、希尔排序的收获。

这些排序算法是计算机科学中非常基础和重要的知识点,学习它们可以帮助你: 1.理解排序的重要性:排序是计算机科学中的一个基本问题,它可以应用于各种场景,例如对数据进行分类、查找等。通过学习排序算法,你可以更好地理解排序的重要性和实际应用。 2.提高编程能力:这些排序算法都有不同的实现方式和优化方法,学习它们可以帮助你提高编程能力,例如代码的设计和优化。 3.增强算法思维:排序算法涉及到很多算法思想,例如分治、贪心、动态规划等。学习它们可以帮助你增强算法思维,更好地解决其他类似的问题。 4.提升面试竞争力:排序算法是计算机科学中的常见面试题目之一,掌握它们可以提升你的面试竞争力,让你在面试中更加自信。 总之,学习排序算法是非常有价值的,可以对你的计算机科学知识、编程能力以及面试竞争力产生积极的影响。
阅读全文

相关推荐

大家在看

recommend-type

MATLAB实现DSP方法抑制啸叫设计,包含实验报告

MATLAB实现DSP方法抑制啸叫设计,包含实验报告,项目代码可顺利编译运行~
recommend-type

[详细完整版]软件工程例题.pdf

1. 某旅馆的电话服务如下:可以拨分机号和外线号码。分机号是从 7201 至 7299。外线号 码先拨 9,然后是市话号码或长话号码。长话号码是以区号和市话号码组成。区号是从 100 到 300 中 任 意 的 数 字 串 。 市 话 号 码 是 以 局 号 和 分 局 号 组 成 。 局 号 可 以 是 455,466,888,552 中任意一个号码。分局号是任意长度为 4 的数字串。 要求:写出在数据字典中,电话号码的数据流条目的定义即组成。 电话号码=[分机号"外线号码] 分机号=7201...7299 外线号码=9+[市话号码"长话号码] 长话号码=区号+市话号码 区号=100...300 市话号码=局号+分局号 局号=[455"466"888"552] 分局号=4{数字}4 数字=[0"1"2"3"4"5"6"7"8"9] 2. 为以下程序流程图分别设计语句覆盖和判定覆盖测试用例,并标明程序执行路径。 (1)语句覆盖测试用例 令 x=2,y=0,z=4 作为测试数据,程序执行路径为 abcde。 (2)判定覆盖 可以设计如下两组数据以满足判定覆盖: x=3,y=0,z=1(1
recommend-type

项目六 基于stc89c52系列单片机控制步进电机.rar

系统采用stc89c51芯片进行的单片机控制步进电机,能够实现控制步进电机转动角度。 项目包含主要器件stc89c51 lcd1602 步进电机 矩阵按键 项目包含程序 原理图 PCB
recommend-type

【VS】VS2022离线包下载工具_dlgcy.zip

【VS】VS2022离线包下载工具_dlgcy 附带工具及说明文档 可下载 Visual Studio 离线包
recommend-type

console线驱动CH341SER.zip

串口线驱动----usb2.0-ser!)

最新推荐

recommend-type

C++实现八个常用的排序算法:插入排序、冒泡排序、选择排序、希尔排序等

在本文中,我们将深入探讨C++实现的八种常见的排序算法,它们分别是插入排序、冒泡排序、选择排序、希尔排序、快速排序、归并排序、堆排序和LST基数排序。这些排序算法是计算机科学中基础且重要的部分,它们在处理...
recommend-type

Oracle数据库中ORDER BY排序和查询按IN条件的顺序输出

而不稳定的排序算法(如选择排序、快速排序、希尔排序和堆排序)则无法保证这一点。 接下来,我们讨论`IN`条件的查询顺序。在SQL中,`IN`子句用于指定一个列可以接受的一系列值。然而,Oracle并没有保证按照`IN`...
recommend-type

各种排序算法C++的实现(冒泡,选择,插入,快速,归并,堆)

本篇文章将深入探讨几种常见的排序算法的C++实现,包括冒泡排序、选择排序、插入排序、快速排序、归并排序以及堆排序。 1. **冒泡排序**: 冒泡排序是最基础的排序算法之一,它通过重复遍历待排序的数列,依次比较...
recommend-type

数据结构课程设计报告之排序算法.docx

- **实现算法**:需要实现包括直接插入排序、冒泡排序、直接选择排序、快速排序、堆排序和归并排序在内的多种内部排序算法。 - **演示形式**:程序应以人机交互的方式运行,每次排序后展示比较次数和移动次数的...
recommend-type

c语言编程的几种排序算法比较

最后,文章中提到的一些“奇特”算法,比如鸡尾酒排序(双向冒泡排序)和堆排序,虽然在效率上可能不如快速排序等算法,但它们提供了不同的思考角度,有助于深化对排序问题的理解。 总的来说,选择合适的排序算法应...
recommend-type

Cyclone IV硬件配置详细文档解析

Cyclone IV是Altera公司(现为英特尔旗下公司)的一款可编程逻辑设备,属于Cyclone系列FPGA(现场可编程门阵列)的一部分。作为硬件设计师,全面了解Cyclone IV配置文档至关重要,因为这直接影响到硬件设计的成功与否。配置文档通常会涵盖器件的详细架构、特性和配置方法,是设计过程中的关键参考材料。 首先,Cyclone IV FPGA拥有灵活的逻辑单元、存储器块和DSP(数字信号处理)模块,这些是设计高效能、低功耗的电子系统的基石。Cyclone IV系列包括了Cyclone IV GX和Cyclone IV E两个子系列,它们在特性上各有侧重,适用于不同应用场景。 在阅读Cyclone IV配置文档时,以下知识点需要重点关注: 1. 设备架构与逻辑资源: - 逻辑单元(LE):这是构成FPGA逻辑功能的基本单元,可以配置成组合逻辑和时序逻辑。 - 嵌入式存储器:包括M9K(9K比特)和M144K(144K比特)两种大小的块式存储器,适用于数据缓存、FIFO缓冲区和小规模RAM。 - DSP模块:提供乘法器和累加器,用于实现数字信号处理的算法,比如卷积、滤波等。 - PLL和时钟网络:时钟管理对性能和功耗至关重要,Cyclone IV提供了可配置的PLL以生成高质量的时钟信号。 2. 配置与编程: - 配置模式:文档会介绍多种配置模式,如AS(主动串行)、PS(被动串行)、JTAG配置等。 - 配置文件:在编程之前必须准备好适合的配置文件,该文件通常由Quartus II等软件生成。 - 非易失性存储器配置:Cyclone IV FPGA可使用非易失性存储器进行配置,这些配置在断电后不会丢失。 3. 性能与功耗: - 性能参数:配置文档将详细说明该系列FPGA的最大工作频率、输入输出延迟等性能指标。 - 功耗管理:Cyclone IV采用40nm工艺,提供了多级节能措施。在设计时需要考虑静态和动态功耗,以及如何利用各种低功耗模式。 4. 输入输出接口: - I/O标准:支持多种I/O标准,如LVCMOS、LVTTL、HSTL等,文档会说明如何选择和配置适合的I/O标准。 - I/O引脚:每个引脚的多功能性也是重要考虑点,文档会详细解释如何根据设计需求进行引脚分配和配置。 5. 软件工具与开发支持: - Quartus II软件:这是设计和配置Cyclone IV FPGA的主要软件工具,文档会介绍如何使用该软件进行项目设置、编译、仿真以及调试。 - 硬件支持:除了软件工具,文档还可能包含有关Cyclone IV开发套件和评估板的信息,这些硬件平台可以加速产品原型开发和测试。 6. 应用案例和设计示例: - 实际应用:文档中可能包含针对特定应用的案例研究,如视频处理、通信接口、高速接口等。 - 设计示例:为了降低设计难度,文档可能会提供一些设计示例,它们可以帮助设计者快速掌握如何使用Cyclone IV FPGA的各项特性。 由于文件列表中包含了三个具体的PDF文件,它们可能分别是针对Cyclone IV FPGA系列不同子型号的特定配置指南,或者是覆盖了特定的设计主题,例如“cyiv-51010.pdf”可能包含了针对Cyclone IV E型号的详细配置信息,“cyiv-5v1.pdf”可能是版本1的配置文档,“cyiv-51008.pdf”可能是关于Cyclone IV GX型号的配置指导。为获得完整的技术细节,硬件设计师应当仔细阅读这三个文件,并结合产品手册和用户指南。 以上信息是Cyclone IV FPGA配置文档的主要知识点,系统地掌握这些内容对于完成高效的设计至关重要。硬件设计师必须深入理解文档内容,并将其应用到实际的设计过程中,以确保最终产品符合预期性能和功能要求。
recommend-type

【WinCC与Excel集成秘籍】:轻松搭建数据交互桥梁(必读指南)

# 摘要 本论文深入探讨了WinCC与Excel集成的基础概念、理论基础和实践操作,并进一步分析了高级应用以及实际案例。在理论部分,文章详细阐述了集成的必要性和优势,介绍了基于OPC的通信机制及不同的数据交互模式,包括DDE技术、VBA应用和OLE DB数据访问方法。实践操作章节中,着重讲解了实现通信的具体步骤,包括DDE通信、VBA的使
recommend-type

华为模拟互联地址配置

### 配置华为设备模拟互联网IP地址 #### 一、进入接口配置模式并分配IP地址 为了使华为设备能够模拟互联网连接,需先为指定的物理或逻辑接口设置有效的公网IP地址。这通常是在广域网(WAN)侧执行的操作。 ```shell [Huawei]interface GigabitEthernet 0/0/0 # 进入特定接口配置视图[^3] [Huawei-GigabitEthernet0/0/0]ip address X.X.X.X Y.Y.Y.Y # 设置IP地址及其子网掩码,其中X代表具体的IPv4地址,Y表示对应的子网掩码位数 ``` 这里的`GigabitEth
recommend-type

Java游戏开发简易实现与地图控制教程

标题和描述中提到的知识点主要是关于使用Java语言实现一个简单的游戏,并且重点在于游戏地图的控制。在游戏开发中,地图控制是基础而重要的部分,它涉及到游戏世界的设计、玩家的移动、视图的显示等等。接下来,我们将详细探讨Java在游戏开发中地图控制的相关知识点。 1. Java游戏开发基础 Java是一种广泛用于企业级应用和Android应用开发的编程语言,但它的应用范围也包括游戏开发。Java游戏开发主要通过Java SE平台实现,也可以通过Java ME针对移动设备开发。使用Java进行游戏开发,可以利用Java提供的丰富API、跨平台特性以及强大的图形和声音处理能力。 2. 游戏循环 游戏循环是游戏开发中的核心概念,它控制游戏的每一帧(frame)更新。在Java中实现游戏循环一般会使用一个while或for循环,不断地进行游戏状态的更新和渲染。游戏循环的效率直接影响游戏的流畅度。 3. 地图控制 游戏中的地图控制包括地图的加载、显示以及玩家在地图上的移动控制。Java游戏地图通常由一系列的图像层构成,比如背景层、地面层、对象层等,这些图层需要根据游戏逻辑进行加载和切换。 4. 视图管理 视图管理是指游戏世界中,玩家能看到的部分。在地图控制中,视图通常是指玩家的视野,它需要根据玩家位置动态更新,确保玩家看到的是当前相关场景。使用Java实现视图管理时,可以使用Java的AWT和Swing库来创建窗口和绘制图形。 5. 事件处理 Java游戏开发中的事件处理机制允许对玩家的输入进行响应。例如,当玩家按下键盘上的某个键或者移动鼠标时,游戏需要响应这些事件,并更新游戏状态,如移动玩家角色或执行其他相关操作。 6. 游戏开发工具 虽然Java提供了强大的开发环境,但通常为了提升开发效率和方便管理游戏资源,开发者会使用一些专门的游戏开发框架或工具。常见的Java游戏开发框架有LibGDX、LWJGL(轻量级Java游戏库)等。 7. 游戏地图的编程实现 在编程实现游戏地图时,通常需要以下几个步骤: - 定义地图结构:包括地图的大小、图块(Tile)的尺寸、地图层级等。 - 加载地图数据:从文件(如图片或自定义的地图文件)中加载地图数据。 - 地图渲染:在屏幕上绘制地图,可能需要对地图进行平滑滚动(scrolling)、缩放(scaling)等操作。 - 碰撞检测:判断玩家或其他游戏对象是否与地图中的特定对象发生碰撞,以决定是否阻止移动等。 - 地图切换:实现不同地图间的切换逻辑。 8. JavaTest01示例 虽然提供的信息中没有具体文件内容,但假设"javaTest01"是Java项目或源代码文件的名称。在这样的示例中,"javaTest01"可能包含了一个或多个类(Class),这些类中包含了实现地图控制逻辑的主要代码。例如,可能存在一个名为GameMap的类负责加载和渲染地图,另一个类GameController负责处理游戏循环和玩家输入等。 通过上述知识点,我们可以看出实现一个简单的Java游戏地图控制不仅需要对Java语言有深入理解,还需要掌握游戏开发相关的概念和技巧。在具体开发过程中,还需要参考相关文档和API,以及可能使用的游戏开发框架和工具的使用指南。
recommend-type

【超市销售数据深度分析】:从数据库挖掘商业价值的必经之路

# 摘要 本文全面探讨了超市销售数据分析的方法与应用,从数据的准备、预处理到探索性数据分析,再到销售预测与市场分析,最后介绍高级数据分析技术在销售领域的应用。通过详细的章节阐述,本文着重于数据收集、清洗、转换、可视化和关联规则挖掘等关键步骤。