quantile-on-quantile model
时间: 2023-10-27 12:06:39 浏览: 98
Quantile-on-quantile (Q-Q) model是一种探索性图形方法,用于比较观测数据的分位数与理论分位数之间的关系。该模型通过将观测数据的分位数与相应的理论分位数进行比较,来评估数据的分布是否符合某个理论分布。在Q-Q模型中,我们可以使用Q-Q图来可视化这种比较关系。Q-Q图以观测数据的分位数为横坐标,以理论分位数为纵坐标,通过绘制散点图来表示这种比较关系。如果观测数据的分布与理论分布完全一致,那么Q-Q图上的散点将会近似落在一条直线上。否则,散点的分布将会偏离直线。通过观察Q-Q图,我们可以初步判断观测数据是否符合某个理论分布,或者是否需要进行进一步的数据转换或者模型选择。
相关问题
R语言格兰杰因果检验quantile-on-quantile approach
格兰杰因果检验是一种用于分析时间序列数据中因果关系的方法。R语言中可以使用quantile-on-quantile approach进行格兰杰因果检验。该方法基于分位数回归分析,通过对两个时间序列的分位数进行回归,来判断其中一个序列是否对另一个序列有因果影响。以下是一个使用quantile-on-quantile approach进行格兰杰因果检验的例子[^3]:
```R
library(quantreg)
library(ggplot2)
# 生成两个时间序列数据
set.seed(123)
x <- arima.sim(model = list(ar = 0.7), n = 100)
y <- arima.sim(model = list(ar = 0.5), n = 100)
# 将数据分为训练集和测试集
train.x <- x[1:80]
test.x <- x[81:100]
train.y <- y[1:80]
test.y <- y[81:100]
# 使用quantile-on-quantile approach进行格兰杰因果检验
g.fit <- rq(test.y ~ test.x, tau = 0.9)
g.coef <- coef(g.fit)
# 绘制分位数回归图像
ggplot(data.frame(x = test.x, y = test.y), aes(x, y)) +
geom_point() +
geom_quantreg(mapping = aes(color = "quantile regression"),
formula = y ~ x, tau = 0.9, size = 1.2) +
geom_smooth(mapping = aes(color = "lowess"), method = "loess", size = 1.2) +
geom_abline(mapping = aes(intercept = g.coef, slope = g.coef,
color = "quantile-on-quantile"), size = 1.2) +
scale_color_manual(name = "Regression",
values = c("quantile regression" = "black",
"lowess" = "gray40",
"quantile-on-quantile" = "blue"),
labels = c("Quantile regression", "Lowess", "Quantile-on-quantile")) +
theme_minimal()
```
上述代码中,首先生成了两个时间序列x和y,然后将数据分为训练集和测试集。接着,使用`rq()`函数进行quantile-on-quantile approach格兰杰因果检验,其中`tau`参数为分位数回归的分位数。最后,通过`ggplot2`包绘制了分位数回归图像,并用蓝色直线表示quantile-on-quantile approach的结果。
搜索quantile g-computation模型分析混合物暴露的R语言教程
以下是搜索到的quantile g-computation模型分析混合物暴露的R语言教程:
1. "Quantile g-computation for causal inference with a mixture of exposures: an application to persistent organic pollutants and gestational diabetes" by Erin Bakshis Ware and Bhramar Mukherjee. This paper provides a step-by-step guide to implementing the quantile g-computation model in R for analyzing the causal effect of a mixture of exposures on gestational diabetes.
2. "Causal inference for mixtures of exposures using the quantile g-computation formula" by Tyler J. VanderWeele. This tutorial provides an overview of the quantile g-computation model and its application to analyzing the causal effect of a mixture of exposures, with examples in R.
3. "Causal Inference for a Mixture of Exposures using the Quantile G-computation Formula: Application to Sugar-sweetened Beverage Consumption and Body Mass Index in Children" by Andrea B. Troxel and David A. Berrigan. This paper provides a practical guide to implementing the quantile g-computation model in R for analyzing the causal effect of a mixture of exposures on body mass index in children.
4. "Quantile g-computation for causal inference in the presence of measurement error" by Mark J. van der Laan and Sherri Rose. This tutorial provides an overview of the quantile g-computation model and its application to analyzing the causal effect of a mixture of exposures in the presence of measurement error, with examples in R.
这些教程可以帮助你了解如何使用R语言实现quantile g-computation模型来分析混合物暴露的因果效应。注意,这些教程可能需要一定的统计学知识和R编程基础。
阅读全文