CROSS_COMPILE ?= AS = $(CROSS_COMPILE)as LD = $(CROSS_COMPILE)ld CC = $(CROSS_COMPILE)gcc CPP = $(CC) -E AR = $(CROSS_COMPILE)ar NM = $(CROSS_COMPILE)nm STRIP = $(CROSS_COMPILE)strip OBJCOPY = $(CROSS_COMPILE)objcopy OBJDUMP = $(CROSS_COMPILE)objdump export AS LD CC CPP AR NM export STRIP OBJCOPY OBJDUMP CFLAGS := -Wall -O2 -g CFLAGS += -I $(shell pwd)/include LDFLAGS := export CFLAGS LDFLAGS TOPDIR := $(shell pwd) export TOPDIR TARGET := test obj-y += display/ obj-y += unittest/ all : start_recursive_build $(TARGET) @echo $(TARGET) has been built! start_recursive_build: make -C ./ -f $(TOPDIR)/Makefile.build $(TARGET) : built-in.o $(CC) -o $(TARGET) built-in.o $(LDFLAGS) clean: rm -f $(shell find -name "*.o") rm -f $(TARGET) distclean: rm -f $(shell find -name "*.o") rm -f $(shell find -name "*.d") rm -f $(TARGET)

时间: 2024-04-16 15:28:10 浏览: 144
在你提供的 Makefile 中,我没有看到任何问题。`missing separator` 错误通常是由于缩进问题引起的,但是你的 Makefile 中的规则看起来是正确缩进的。 要解决这个问题,你可以尝试以下几个步骤: 1. 确保你的 Makefile 使用的是制表符而不是空格进行缩进。有些编辑器可能会将制表符转换为空格,这可能会导致错误。你可以在编辑器设置中查找并禁用此选项。 2. 检查 Makefile 中每个规则的前面是否有一个冒号(:)。确保每个规则都遵循以下格式: ``` target: dependencies command ``` 注意,`: dependencies` 和 `command` 之间有一个制表符缩进。 3. 确保 Makefile 中没有其他非法字符或语法错误。请检查每一行是否正确,没有多余的空格或特殊字符。 如果你仍然遇到问题,请提供完整的错误消息和任何其他相关信息,以便我能够更好地帮助你。
相关问题

帮我讲解一下下面这些代码 CROSS_COMPILE ?= arm-linux-gnueabihf- TARGET ?= ledc CC := $(CROSS_COMPILE)gcc LD := $(CROSS_COMPILE)ld OBJCOPY := $(CROSS_COMPILE)objcopy OBJDUMP := $(CROSS_COMPILE)objdump INCDIRS := imx6u \ bsp/clk \ bsp/led \ bsp/delay SRCDIRS := project \ bsp/clk \ bsp/led \ bsp/delay INCLUDE := $(patsubst %, -I %, $(INCDIRS)) SFILES := $(foreach dir, $(SRCDIRS), $(wildcard $(dir)/*.S)) CFILES := $(foreach dir, $(SRCDIRS), $(wildcard $(dir)/*.c)) SFILENDIR := $(notdir $(SFILES)) CFILENDIR := $(notdir $(CFILES)) SOBJS := $(patsubst %, obj/%, $(SFILENDIR:.S=.o)) COBJS := $(patsubst %, obj/%, $(CFILENDIR:.c=.o)) OBJS := $(SOBJS) $(COBJS) VPATH := $(SRCDIRS) .PHONY: clean $(TARGET).bin : $(OBJS) $(LD) -Timx6u.lds -o $(TARGET).elf $^ $(OBJCOPY) -O binary -S $(TARGET).elf $@ $(OBJDUMP) -D -m arm $(TARGET).elf > $(TARGET).dis $(SOBJS) : obj/%.o : %.S $(CC) -Wall -nostdlib -c -O2 $(INCLUDE) -o $@ $< $(COBJS) : obj/%.o : %.c $(CC) -Wall -nostdlib -c -O2 $(INCLUDE) -o $@ $< clean: rm -rf $(TARGET).elf $(TARGET).dis $(TARGET).bin $(COBJS) $(SOBJS)

这段代码是一个Makefile文件,用于编译 ARM 架构的嵌入式系统程序。以下是代码中各个变量和规则的解释: - CROSS_COMPILE:交叉编译工具链的前缀。 - TARGET:目标文件名。 - CC:编译器命令。 - LD:链接器命令。 - OBJCOPY:目标文件格式转换命令。 - OBJDUMP:反汇编命令。 - INCDIRS:头文件目录列表。 - SRCDIRS:源文件目录列表。 - INCLUDE:包含头文件的编译选项。 - SFILES:汇编文件列表。 - CFILES:C语言文件列表。 - SFILENDIR:汇编文件列表中不包含路径的文件名。 - CFILENDIR:C语言文件列表中不包含路径的文件名。 - SOBJS:编译后的汇编文件对象文件列表。 - COBJS:编译后的C语言文件对象文件列表。 - OBJS:所有对象文件列表。 - VPATH:源文件搜索路径。 Makefile中的规则: - $(TARGET).bin:目标文件规则,依赖于所有的对象文件。 - $(LD):链接器命令,链接所有的对象文件生成ELF文件。 - $(OBJCOPY):目标文件格式转换命令,将ELF文件转换成二进制文件。 - $(OBJDUMP):反汇编命令,生成反汇编代码。 - $(SOBJS):汇编文件对象文件规则,依赖于汇编文件,使用$(CC)编译器进行编译。 - $(COBJS):C语言文件对象文件规则,依赖于C语言文件,使用$(CC)编译器进行编译。 - clean:清除目标文件、对象文件和反汇编文件。

makefile中的CROSS_COMPILE怎么写

在 Makefile 中,CROSS_COMPILE 用于指定交叉编译工具链的前缀,以便在编译跨平台程序时使用。具体的写法取决于你使用的交叉编译工具链。 一般情况下,CROSS_COMPILE 的写法如下: CROSS_COMPILE = <交叉编译工具链前缀> 例如,如果你使用的是以 arm 开头的交叉编译工具链,你可以这样写: CROSS_COMPILE = arm-linux- 这样,Makefile 中的命令将会使用 arm-linux-gcc、arm-linux-ld 等工具来进行交叉编译。 请注意,具体的交叉编译工具链前缀取决于你所使用的工具链。在实际使用时,你需要根据你的交叉编译工具链的前缀进行相应的设置。
阅读全文

相关推荐

最新推荐

recommend-type

Vue + Vite + iClient3D for Cesium 实现限高分析

Vue + Vite + iClient3D for Cesium 实现限高分析
recommend-type

【发文无忧】基于matlab鲸鱼算法WOA-Kmean-Transformer-GRU数据回归预测【Matlab仿真 5858期】.zip

CSDN Matlab研究室上传的资料均有对应的仿真结果图,仿真结果图均是完整代码运行得出,完整代码亲测可用,适合小白; 1、完整的代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描博客文章底部QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
recommend-type

PureMVC AS3在Flash中的实践与演示:HelloFlash案例分析

资源摘要信息:"puremvc-as3-demo-flash-helloflash:PureMVC AS3 Flash演示" PureMVC是一个开源的、轻量级的、独立于框架的用于MVC(模型-视图-控制器)架构模式的实现。它适用于各种应用程序,并且在多语言环境中得到广泛支持,包括ActionScript、C#、Java等。在这个演示中,使用了ActionScript 3语言进行Flash开发,展示了如何在Flash应用程序中运用PureMVC框架。 演示项目名为“HelloFlash”,它通过一个简单的动画来展示PureMVC框架的工作方式。演示中有一个小蓝框在灰色房间内移动,并且可以通过多种方式与之互动。这些互动包括小蓝框碰到墙壁改变方向、通过拖拽改变颜色和大小,以及使用鼠标滚轮进行缩放等。 在技术上,“HelloFlash”演示通过一个Flash电影的单帧启动应用程序。启动时,会发送通知触发一个启动命令,然后通过命令来初始化模型和视图。这里的视图组件和中介器都是动态创建的,并且每个都有一个唯一的实例名称。组件会与他们的中介器进行通信,而中介器则与代理进行通信。代理用于保存模型数据,并且中介器之间通过发送通知来通信。 PureMVC框架的核心概念包括: - 视图组件:负责显示应用程序的界面部分。 - 中介器:负责与视图组件通信,并处理组件之间的交互。 - 代理:负责封装数据或业务逻辑。 - 控制器:负责管理命令的分派。 在“HelloFlash”中,我们可以看到这些概念的具体实现。例如,小蓝框的颜色变化,是由代理来处理的模型数据;而小蓝框的移动和缩放则是由中介器与组件之间的通信实现的。所有这些操作都是在PureMVC框架的规则和指导原则下完成的。 在Flash开发中,ActionScript 3是主要的编程语言,它是一种面向对象的语言,并且支持复杂的事件处理和数据管理。Flash平台本身提供了一套丰富的API和框架,使得开发者可以创建动态的、交互性强的网络应用。 最后,我们还看到了一个压缩包文件的名称列表“puremvc-as3-demo-flash-helloflash-master”,这表明该演示项目的源代码应该可以在该压缩包中找到,并且可以在支持ActionScript 3的开发环境中进行分析和学习。开发者可以通过这个项目的源代码来深入了解PureMVC框架在Flash应用中的应用,并且学习到如何实现复杂的用户交互、数据处理和事件通信。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

YRC1000 EtherNet_IP通信协议:掌握连接与数据交换的6个关键策略

![YRC1000 EtherNetIP通信功能说明书](https://5.imimg.com/data5/SELLER/Default/2022/12/EE/XV/JL/4130645/yrc1000-csra-cdc101aa-3--1000x1000.jpg) # 摘要 YRC1000 EtherNet/IP通信协议作为工业自动化领域的重要技术之一,本论文对其进行了系统性的介绍和分析。从通信连接策略的实施到数据交换机制的详细阐述,再到高级应用与实践案例的深入探讨,本文全面覆盖了YRC1000的操作原理、配置方法、安全性和性能监控等方面。通过对各种典型应用场景的案例分析,本文不仅总结了
recommend-type

如何设置 OpenFileDialog 用户只能在固定文件夹及其子文件夹里选择文件

在Windows应用程序中,如果你想要限制OpenFileDialog让用户只能在特定的文件夹及其子文件夹中选择文件,你可以通过设置`InitialDirectory`属性和`Filter`属性来实现。以下是步骤: 1. 创建一个`OpenFileDialog`实例: ```csharp OpenFileDialog openFileDialog = new OpenFileDialog(); ``` 2. 设置初始目录(`InitialDirectory`)为你要限制用户选择的起始文件夹,例如: ```csharp string restrictedFolder = "C:\\YourR
recommend-type

掌握Makefile多目标编译与清理操作

资源摘要信息:"makefile学习用测试文件.rar" 知识点: 1. Makefile的基本概念: Makefile是一个自动化编译的工具,它可以根据文件的依赖关系进行判断,只编译发生变化的文件,从而提高编译效率。Makefile文件中定义了一系列的规则,规则描述了文件之间的依赖关系,并指定了如何通过命令来更新或生成目标文件。 2. Makefile的多个目标: 在Makefile中,可以定义多个目标,每个目标可以依赖于其他的文件或目标。当执行make命令时,默认情况下会构建Makefile中的第一个目标。如果你想构建其他的特定目标,可以在make命令后指定目标的名称。 3. Makefile的单个目标编译和删除: 在Makefile中,单个目标的编译通常涉及依赖文件的检查以及编译命令的执行。删除操作则通常用clean规则来定义,它不依赖于任何文件,但执行时会删除所有编译生成的目标文件和中间文件,通常不包含源代码文件。 4. Makefile中的伪目标: 伪目标并不是一个文件名,它只是一个标签,用来标识一个命令序列,通常用于执行一些全局性的操作,比如清理编译生成的文件。在Makefile中使用特殊的伪目标“.PHONY”来声明。 5. Makefile的依赖关系和规则: 依赖关系说明了一个文件是如何通过其他文件生成的,规则则是对依赖关系的处理逻辑。一个规则通常包含一个目标、它的依赖以及用来更新目标的命令。当依赖的时间戳比目标的新时,相应的命令会被执行。 6. Linux环境下的Makefile使用: Makefile的使用在Linux环境下非常普遍,因为Linux是一个类Unix系统,而make工具起源于Unix系统。在Linux环境中,通过终端使用make命令来执行Makefile中定义的规则。Linux中的make命令有多种参数来控制执行过程。 7. Makefile中变量和模式规则的使用: 在Makefile中可以定义变量来存储一些经常使用的字符串,比如编译器的路径、编译选项等。模式规则则是一种简化多个相似规则的方法,它使用模式来匹配多个目标,适用于文件名有规律的情况。 8. Makefile的学习资源: 学习Makefile可以通过阅读相关的书籍、在线教程、官方文档等资源,推荐的书籍有《Managing Projects with GNU Make》。对于初学者来说,实际编写和修改Makefile是掌握Makefile的最好方式。 9. Makefile的调试和优化: 当Makefile较为复杂时,可能出现预料之外的行为,此时需要调试Makefile。可以使用make的“-n”选项来预览命令的执行而不实际运行它们,或者使用“-d”选项来输出调试信息。优化Makefile可以减少不必要的编译,提高编译效率,例如使用命令的输出作为条件判断。 10. Makefile的学习用测试文件: 对于学习Makefile而言,实际操作是非常重要的。通过提供一个测试文件,可以更好地理解Makefile中目标的编译和删除操作。通过编写相应的Makefile,并运行make命令,可以观察目标是如何根据依赖被编译和在需要时如何被删除的。 通过以上的知识点,你可以了解到Makefile的基本用法和一些高级技巧。在Linux环境下,利用Makefile可以有效地管理项目的编译过程,提高开发效率。对于初学者来说,通过实际编写Makefile并结合测试文件进行练习,将有助于快速掌握Makefile的使用。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

模拟IC设计在无线通信中的五大机遇与四大挑战深度解读

![模拟IC设计在无线通信中的五大机遇与四大挑战深度解读](http://www.jrfcl.com/uploads/201909/5d905abeb9c72.jpg) # 摘要 模拟IC设计在无线通信领域扮演着至关重要的角色,随着无线通信市场的快速增长,模拟IC设计的需求也随之上升。本文分析了模拟IC设计在无线通信中的机遇,特别是在5G和物联网(IoT)等新兴技术的推动下,对能效和尺寸提出了更高的要求。同时,本文也探讨了设计过程中所面临的挑战,包括制造工艺的复杂性、电磁干扰、信号完整性、成本控制及技术标准与法规遵循等问题。最后,文章展望了未来的发展趋势,提出了创新设计方法论、人才培养与合作
recommend-type

如何使用C语言在6MHz频率下,按照4800bps波特率和方式1通信协议,为甲乙两台机器编写程序实现数据传输?具体步骤包括甲机发送二进制序列0,1,2,1FH到乙机,以及乙机将接收到的数据存储在地址为20H开始的内部RAM中。通信过程中应考虑查询方式的编程细节。

在C语言中通过串口通信(通常是使用软件UART或硬件提供的API)来实现在6MHz频率下,4800bps波特率和方式1通信协议的数据传输,需要遵循以下步骤: 1. **设置硬件接口**: - 确保你已经连接了正确的串行端口,并配置其工作模式为方式1(通常涉及到控制寄存器的设置,如波特率、数据位数、停止位和奇偶校验等)。对于大多数现代微控制器,例如AVR系列,可以使用`UCSRB`和`UBRRH`寄存器进行配置。 2. **初始化串口**: ```c #include <avr/io.h> // ... (其他头文件) UCSR0B = (1 << TXEN0)