使用fortran编写三段程序,分别用矩形法,梯形法,辛普森法求积分
时间: 2024-12-23 08:18:05 浏览: 4
在Fortran中,我们可以使用循环结构和简单的数学计算来实现三个常用的数值积分方法:矩形法则、梯形法则和辛普森法则。下面我会简述一下每个方法的伪代码示例,并提供基本框架:
1. **矩形法(Rectangle Rule)**
```fortran
function rectangle_integration(f, a, b, n)
real, intent(in) :: f, a, b
integer, intent(in) :: n
real :: h, sum
h = (b - 1)*h)
end do
rectangle_integration = h * sum
end function
```
2. **梯形法(Trapezoidal Rule)**
```fortran
function trapezoidal_integration(f, a, b, n)
real, intent(in) :: f, a, b
integer, intent(in) :: n
real :: h, sum
h = (b - a) / n
sum = 0.5 * (f(a) + f(b))
do i = 2, n
sum = sum + f(a + i*h)
end do
trapezoidal_integration = h * sum
end function
```
3. **辛普森法则(Simpson's Rule)**
```fortran
function simpson_integration(f, a, b, n)
real, intent(in) :: f, a, b
integer, intent(in) :: n
real :: h, sum, factor
h = (b - a) / n
if mod(n, 2) == 0 then
factor = 4./3.
else
factor = 2.
end if
sum = f(a) + f(b)
do i = 1, n-1, 2
sum = sum + 4.*f(a + i*h)
end do
if mod(n, 2) == 0 then
sum = sum + f(a + (n-1)*h)
end do
simpson_integration = h * factor * sum
end function
```
以上就是用Fortran实现这三个积分方法的基本框架。在实际使用时,需要将函数`f`替换为你想要积分的实际函数表达式。
阅读全文