制作一个用SnownNLP对京东商品评论进行情感分析并打分的方法,结果保存在excel中
时间: 2024-10-29 13:18:28 浏览: 45
使用SnowNLP进行京东商品评论的情感分析并将其结果保存到Excel中,可以按照以下步骤进行:
1. **安装所需库**:
首先确保已经安装了`pandas`, `openpyxl`, `snownlp` 和 `jieba` 这几个Python库。如果没有,可以用pip进行安装:
```
pip install pandas openpyxl snownlp jieba
```
2. **数据预处理**:
- 使用`jieba`进行分词,因为SnowNLP默认使用的是简体中文分词,需要导入`jieba`库。
- 对评论文本进行清洗,移除特殊字符、数字等非文字信息。
```python
import jieba
from snownlp import SnowNLP
def preprocess(text):
words = [word for word in jieba.lcut(text) if word.isalpha()]
return ' '.join(words)
```
3. **情感分析**:
- 创建`SnowNLP`实例,并进行情感分析,SnowNLP的情感极性范围通常是-1(非常负面)到1(非常正面),中间值0表示中立。
```python
def sentiment_analysis(review):
s = SnowNLP(preprocess(review))
return s.sentiments
```
4. **批量处理**:
- 将上述函数应用到所有京东商品评论上,将每条评论的情感得分存储在一个列表中。
```python
reviews = ... # 从京东API获取的商品评论数据
scores = [sentiment_analysis(review) for review in reviews]
```
5. **保存到Excel**:
- 使用`pandas`库创建DataFrame,然后将评论和对应的情感得分添加为列,并保存到Excel文件中。
```python
import pandas as pd
df = pd.DataFrame({'评论': reviews, '情感得分': scores})
df.to_excel('京东评论情感分析.xlsx', index=False)
```
阅读全文
相关推荐













