0x00007FF721C5D5E6指令引用了0x0000000000000000内存,内存不能为read

时间: 2024-06-14 13:08:21 浏览: 118
0x00007FF721C5D5E6指令引用0x0000000000000000内存这是一个错误的引用。在计算机中,内存地址0x0000000000000000通常是无效的地址,也被称为空指针。当程序尝试读取或写入空指针地址时,会导致内存访问错误。 内存不能为read的意思是,程序尝试读取一个无效的内存地址,这是非法的操作。操作系统会检测到这个错误,并终止程序的执行,以防止对无效内存地址的访问导致系统崩溃或数据损坏。 可能导致0x00007FF721C5D5E6指令引用了0x0000000000000000内存的原因有: 1. 程序中存在空指针引用,即将空指针作为有效的内存地址进行读取操作。 2. 程序中存在未初始化的指针,导致指针的值为0,然后尝试对该指针进行读取操作。 为了解决这个问题,需要检查程序中的代码逻辑,确保在使用指针之前进行初始化,并避免对空指针进行读取操作。
相关问题

https://s3.bmp.ovh/imgs/2022/12/27/bd23439e721c322f.png如链接所示图的神经网络结构,输入信号为X,输出为Y

### 回答1: 这是一个拥有两个隐藏层的前馈神经网络。输入信号是X,输出信号是Y。隐藏层包含若干个神经元,它们通过权重连接来接收输入信号,并通过激活函数转换输入信号,最后将转换后的信号传递给输出层。输出层的神经元接收隐藏层的输出信号,并将其转换为输出信号Y。 ### 回答2: 根据链接所示图的神经网络结构,该网络是一个前馈神经网络(feedforward neural network),由输入层、隐藏层和输出层构成。输入信号为X,输出为Y。 输入层接收到输入信号X,并将其传递到隐藏层。隐藏层是神经网络中的中间层,用于对输入信号进行加权和激活操作,以产生新的特征表示或中间表示。隐藏层的节点通过激活函数对输入信号进行非线性变换,并将结果传递到输出层。 隐藏层的输出经过权重和偏差的加权求和,并再次通过激活函数进行非线性变换。输出层的节点的激活值即为最终的输出结果Y。 神经网络的训练过程是通过反向传播算法进行的,通过与实际输出结果的差距(即损失函数)计算梯度,并根据梯度更新网络参数,以使网络的输出结果逐渐接近实际结果。 神经网络的结构可以根据具体任务和数据特点进行调整。隐藏层的节点数和层数的选择通常是根据问题的复杂程度和数据集的规模来确定的。更多的隐藏层和节点可以增加网络的表达能力,但也可能导致过拟合问题。 总结:链接所示图的神经网络结构是一个前馈神经网络,由输入层、隐藏层和输出层构成。输入信号X经过隐藏层的加权和激活操作,最终输出为Y。神经网络的训练过程通过反向传播算法进行,调整网络参数以使输出结果接近实际结果。网络的结构可以根据问题和数据进行调整。

用C语言写一个SHA-512加解密系统

SHA-512是一种安全哈希算法,用于产生消息摘要,不是加解密系统。下面是一个用C语言实现SHA-512算法的示例代码: ```c #include <stdio.h> #include <stdint.h> #include <string.h> #define SHA512_BLOCK_SIZE 128 #define SHA512_DIGEST_SIZE 64 typedef struct SHA512_Context { uint64_t state[8]; uint64_t bitcount[2]; uint8_t buffer[SHA512_BLOCK_SIZE]; } SHA512_Context; static const uint64_t K[80] = { 0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL, 0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL, 0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL, 0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL, 0xd807aa98a3030242ULL, 0x12835b0145706fbeULL, 0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL, 0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL, 0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL, 0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL, 0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL, 0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL, 0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL, 0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL, 0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL, 0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL, 0x06ca6351e003826fULL, 0x142929670a0e6e70ULL, 0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL, 0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL, 0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL, 0x81c2c92e47edaee6ULL, 0x92722c851482353bULL, 0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL, 0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL, 0xd192e819d6ef5218ULL, 0xd69906245565a910ULL, 0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL, 0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL, 0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL, 0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL, 0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL, 0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL, 0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL, 0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL, 0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL, 0xca273eceea26619cULL, 0xd186b8c721c0c207ULL, 0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL, 0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL, 0x113f9804bef90daeULL, 0x1b710b35131c471bULL, 0x28db77f523047d84ULL, 0x32caab7b40c72493ULL, 0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL, 0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL, 0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL }; static const uint8_t padding[SHA512_BLOCK_SIZE] = { 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; static void SHA512_Transform(SHA512_Context *ctx) { uint64_t W[80]; uint64_t A, B, C, D, E, F, G, H, T1, T2; int i; for (i = 0; i < 16; i++) { W[i] = ((uint64_t)ctx->buffer[i * 8 + 0] << 56) | ((uint64_t)ctx->buffer[i * 8 + 1] << 48) | ((uint64_t)ctx->buffer[i * 8 + 2] << 40) | ((uint64_t)ctx->buffer[i * 8 + 3] << 32) | ((uint64_t)ctx->buffer[i * 8 + 4] << 24) | ((uint64_t)ctx->buffer[i * 8 + 5] << 16) | ((uint64_t)ctx->buffer[i * 8 + 6] << 8) | ((uint64_t)ctx->buffer[i * 8 + 7] << 0); } for (i = 16; i < 80; i++) { W[i] = W[i-16] + W[i-7] + (ROTR(W[i-15], 1) ^ ROTR(W[i-15], 8) ^ (W[i-15] >> 7)) + (ROTR(W[i-2], 19) ^ ROTR(W[i-2], 61) ^ (W[i-2] >> 6)); } A = ctx->state[0]; B = ctx->state[1]; C = ctx->state[2]; D = ctx->state[3]; E = ctx->state[4]; F = ctx->state[5]; G = ctx->state[6]; H = ctx->state[7]; for (i = 0; i < 80; i++) { T1 = H + (ROTR(E, 14) ^ ROTR(E, 18) ^ ROTR(E, 41)) + ((E & F) ^ (~E & G)) + K[i] + W[i]; T2 = (ROTR(A, 28) ^ ROTR(A, 34) ^ ROTR(A, 39)) + ((A & B) ^ (A & C) ^ (B & C)); H = G; G = F; F = E; E = D + T1; D = C; C = B; B = A; A = T1 + T2; } ctx->state[0] += A; ctx->state[1] += B; ctx->state[2] += C; ctx->state[3] += D; ctx->state[4] += E; ctx->state[5] += F; ctx->state[6] += G; ctx->state[7] += H; } void SHA512_Init(SHA512_Context *ctx) { memset(ctx, 0, sizeof(*ctx)); ctx->state[0] = 0x6a09e667f3bcc908ULL; ctx->state[1] = 0xbb67ae8584caa73bULL; ctx->state[2] = 0x3c6ef372fe94f82bULL; ctx->state[3] = 0xa54ff53a5f1d36f1ULL; ctx->state[4] = 0x510e527fade682d1ULL; ctx->state[5] = 0x9b05688c2b3e6c1fULL; ctx->state[6] = 0x1f83d9abfb41bd6bULL; ctx->state[7] = 0x5be0cd19137e2179ULL; } void SHA512_Update(SHA512_Context *ctx, const uint8_t *data, size_t len) { size_t i; for (i = 0; i < len; i++) { ctx->buffer[ctx->bitcount[0] % SHA512_BLOCK_SIZE] = data[i]; ctx->bitcount[0] += 8; if (ctx->bitcount[0] == 0) { ctx->bitcount[1]++; } if (ctx->bitcount[0] % SHA512_BLOCK_SIZE == 0) { SHA512_Transform(ctx); } } } void SHA512_Final(SHA512_Context *ctx, uint8_t *digest) { uint64_t totalbits = ctx->bitcount[0] + (ctx->bitcount[1] << 32); size_t padlen = SHA512_BLOCK_SIZE - (size_t)(ctx->bitcount[0] % SHA512_BLOCK_SIZE); int i; SHA512_Update(ctx, padding, padlen); SHA512_Update(ctx, (uint8_t *)&totalbits, sizeof(totalbits)); for (i = 0; i < SHA512_DIGEST_SIZE / 8; i++) { digest[i * 8 + 0] = (ctx->state[i] >> 56) & 0xff; digest[i * 8 + 1] = (ctx->state[i] >> 48) & 0xff; digest[i * 8 + 2] = (ctx->state[i] >> 40) & 0xff; digest[i * 8 + 3] = (ctx->state[i] >> 32) & 0xff; digest[i * 8 + 4] = (ctx->state[i] >> 24) & 0xff; digest[i * 8 + 5] = (ctx->state[i] >> 16) & 0xff; digest[i * 8 + 6] = (ctx->state[i] >> 8) & 0xff; digest[i * 8 + 7] = (ctx->state[i] >> 0) & 0xff; } } int main() { SHA512_Context ctx; uint8_t digest[SHA512_DIGEST_SIZE]; char message[] = "Hello, world!"; size_t len = strlen(message); SHA512_Init(&ctx); SHA512_Update(&ctx, (uint8_t *)message, len); SHA512_Final(&ctx, digest); int i; for (i = 0; i < SHA512_DIGEST_SIZE; i++) { printf("%02x", digest[i]); } printf("\n"); return 0; } ``` 该代码可以计算输入消息的SHA-512哈希值。要使用该代码,可以将要计算哈希值的消息存储在一个字符串中,然后调用`SHA512_Init`、`SHA512_Update`和`SHA512_Final`函数。最终的哈希值将存储在一个64字节的缓冲区中。
阅读全文

相关推荐

最新推荐

recommend-type

关于组织参加“第八届‘泰迪杯’数据挖掘挑战赛”的通知-4页

关于组织参加“第八届‘泰迪杯’数据挖掘挑战赛”的通知-4页
recommend-type

PyMySQL-1.1.0rc1.tar.gz

PyMySQL-1.1.0rc1.tar.gz
recommend-type

技术资料分享CC2530中文数据手册完全版非常好的技术资料.zip

技术资料分享CC2530中文数据手册完全版非常好的技术资料.zip
recommend-type

docker构建php开发环境

docker构建php开发环境
recommend-type

VB程序实例59_系统信息_显示分辨率.zip

VB程序实例,可供参考学习使用,希望对你有所帮助
recommend-type

Aspose资源包:转PDF无水印学习工具

资源摘要信息:"Aspose.Cells和Aspose.Words是两个非常强大的库,它们属于Aspose.Total产品家族的一部分,主要面向.NET和Java开发者。Aspose.Cells库允许用户轻松地操作Excel电子表格,包括创建、修改、渲染以及转换为不同的文件格式。该库支持从Excel 97-2003的.xls格式到最新***016的.xlsx格式,还可以将Excel文件转换为PDF、HTML、MHTML、TXT、CSV、ODS和多种图像格式。Aspose.Words则是一个用于处理Word文档的类库,能够创建、修改、渲染以及转换Word文档到不同的格式。它支持从较旧的.doc格式到最新.docx格式的转换,还包括将Word文档转换为PDF、HTML、XAML、TIFF等格式。 Aspose.Cells和Aspose.Words都有一个重要的特性,那就是它们提供的输出资源包中没有水印。这意味着,当开发者使用这些资源包进行文档的处理和转换时,最终生成的文档不会有任何水印,这为需要清洁输出文件的用户提供了极大的便利。这一点尤其重要,在处理敏感文档或者需要高质量输出的企业环境中,无水印的输出可以帮助保持品牌形象和文档内容的纯净性。 此外,这些资源包通常会标明仅供学习使用,切勿用作商业用途。这是为了避免违反Aspose的使用协议,因为Aspose的产品虽然是商业性的,但也提供了免费的试用版本,其中可能包含了特定的限制,如在最终输出的文档中添加水印等。因此,开发者在使用这些资源包时应确保遵守相关条款和条件,以免产生法律责任问题。 在实际开发中,开发者可以通过NuGet包管理器安装Aspose.Cells和Aspose.Words,也可以通过Maven在Java项目中进行安装。安装后,开发者可以利用这些库提供的API,根据自己的需求编写代码来实现各种文档处理功能。 对于Aspose.Cells,开发者可以使用它来完成诸如创建电子表格、计算公式、处理图表、设置样式、插入图片、合并单元格以及保护工作表等操作。它也支持读取和写入XML文件,这为处理Excel文件提供了更大的灵活性和兼容性。 而对于Aspose.Words,开发者可以利用它来执行文档格式转换、读写文档元数据、处理文档中的文本、格式化文本样式、操作节、页眉、页脚、页码、表格以及嵌入字体等操作。Aspose.Words还能够灵活地处理文档中的目录和书签,这让它在生成复杂文档结构时显得特别有用。 在使用这些库时,一个常见的场景是在企业应用中,需要将报告或者数据导出为PDF格式,以便于打印或者分发。这时,使用Aspose.Cells和Aspose.Words就可以实现从Excel或Word格式到PDF格式的转换,并且确保输出的文件中不包含水印,这提高了文档的专业性和可信度。 需要注意的是,虽然Aspose的产品提供了很多便利的功能,但它们通常是付费的。用户需要根据自己的需求购买相应的许可证。对于个人用户和开源项目,Aspose有时会提供免费的许可证。而对于商业用途,用户则需要购买商业许可证才能合法使用这些库的所有功能。"
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【R语言高性能计算秘诀】:代码优化,提升分析效率的专家级方法

![R语言](https://www.lecepe.fr/upload/fiches-formations/visuel-formation-246.jpg) # 1. R语言简介与计算性能概述 R语言作为一种统计编程语言,因其强大的数据处理能力、丰富的统计分析功能以及灵活的图形表示法而受到广泛欢迎。它的设计初衷是为统计分析提供一套完整的工具集,同时其开源的特性让全球的程序员和数据科学家贡献了大量实用的扩展包。由于R语言的向量化操作以及对数据框(data frames)的高效处理,使其在处理大规模数据集时表现出色。 计算性能方面,R语言在单线程环境中表现良好,但与其他语言相比,它的性能在多
recommend-type

在构建视频会议系统时,如何通过H.323协议实现音视频流的高效传输,并确保通信的稳定性?

要通过H.323协议实现音视频流的高效传输并确保通信稳定,首先需要深入了解H.323协议的系统结构及其组成部分。H.323协议包括音视频编码标准、信令控制协议H.225和会话控制协议H.245,以及数据传输协议RTP等。其中,H.245协议负责控制通道的建立和管理,而RTP用于音视频数据的传输。 参考资源链接:[H.323协议详解:从系统结构到通信流程](https://wenku.csdn.net/doc/2jtq7zt3i3?spm=1055.2569.3001.10343) 在构建视频会议系统时,需要合理配置网守(Gatekeeper)来提供地址解析和准入控制,保证通信安全和地址管理
recommend-type

Go语言控制台输入输出操作教程

资源摘要信息:"在Go语言(又称Golang)中,控制台的输入输出是进行基础交互的重要组成部分。Go语言提供了一组丰富的库函数,特别是`fmt`包,来处理控制台的输入输出操作。`fmt`包中的函数能够实现格式化的输入和输出,使得程序员可以轻松地在控制台显示文本信息或者读取用户的输入。" 1. fmt包的使用 Go语言标准库中的`fmt`包提供了许多打印和解析数据的函数。这些函数可以让我们在控制台上输出信息,或者从控制台读取用户的输入。 - 输出信息到控制台 - Print、Println和Printf是基本的输出函数。Print和Println函数可以输出任意类型的数据,而Printf可以进行格式化输出。 - Sprintf函数可以将格式化的字符串保存到变量中,而不是直接输出。 - Fprint系列函数可以将输出写入到`io.Writer`接口类型的变量中,例如文件。 - 从控制台读取信息 - Scan、Scanln和Scanf函数可以读取用户输入的数据。 - Sscan、Sscanln和Sscanf函数则可以从字符串中读取数据。 - Fscan系列函数与上面相对应,但它们是将输入读取到实现了`io.Reader`接口的变量中。 2. 输入输出的格式化 Go语言的格式化输入输出功能非常强大,它提供了类似于C语言的`printf`和`scanf`的格式化字符串。 - Print函数使用格式化占位符 - `%v`表示使用默认格式输出值。 - `%+v`会包含结构体的字段名。 - `%#v`会输出Go语法表示的值。 - `%T`会输出值的数据类型。 - `%t`用于布尔类型。 - `%d`用于十进制整数。 - `%b`用于二进制整数。 - `%c`用于字符(rune)。 - `%x`用于十六进制整数。 - `%f`用于浮点数。 - `%s`用于字符串。 - `%q`用于带双引号的字符串。 - `%%`用于百分号本身。 3. 示例代码分析 在文件main.go中,可能会包含如下代码段,用于演示如何在Go语言中使用fmt包进行基本的输入输出操作。 ```go package main import "fmt" func main() { var name string fmt.Print("请输入您的名字: ") fmt.Scanln(&name) // 读取一行输入并存储到name变量中 fmt.Printf("你好, %s!\n", name) // 使用格式化字符串输出信息 } ``` 以上代码首先通过`fmt.Print`函数提示用户输入名字,并等待用户从控制台输入信息。然后`fmt.Scanln`函数读取用户输入的一行信息(包括空格),并将其存储在变量`name`中。最后,`fmt.Printf`函数使用格式化字符串输出用户的名字。 4. 代码注释和文档编写 在README.txt文件中,开发者可能会提供关于如何使用main.go代码的说明,这可能包括代码的功能描述、运行方法、依赖关系以及如何处理常见的输入输出场景。这有助于其他开发者理解代码的用途和操作方式。 总之,Go语言为控制台输入输出提供了强大的标准库支持,使得开发者能够方便地处理各种输入输出需求。通过灵活运用fmt包中的各种函数,可以轻松实现程序与用户的交互功能。