fjsp 深度强化学习
时间: 2023-10-07 20:02:41 浏览: 179
深度强化学习
强化学习是一种机器学习的方法,通过学习者与环境进行互动,通过试错的过程来最大化预期的奖励。而深度强化学习则是将深度神经网络与强化学习相结合的一种方法。
在深度强化学习中,深度神经网络被用作函数近似器,用于学习一个策略函数,以将观测值映射到动作空间中的动作。与传统的强化学习方法相比,深度强化学习具有更高的表达能力和自适应性,能够从原始的感知数据中直接进行学习。
深度强化学习的核心思想是通过使用深度神经网络来近似值函数或者策略函数,并通过与环境的交互来不断更新网络参数,使得网络的输出能够最大化预期的奖励。具体来说,深度强化学习可以通过以下步骤来进行:
1. 初始化深度神经网络的参数,并定义网络的结构和学习算法。
2. 将当前的状态输入到神经网络中,获得网络的输出,即当前的动作。
3. 根据选择的动作与环境进行交互,获取下一个状态和奖励信号。
4. 根据当前状态、动作、奖励信号等信息,更新神经网络的参数,使得网络的输出能够更好地预测奖励。
5. 不断重复步骤2-4,直到达到预设的训练次数或达到收敛条件。
深度强化学习在很多领域都取得了重要的突破,例如在游戏领域中,AlphaGo就是通过深度强化学习实现了对人类围棋冠军的击败。此外,深度强化学习也被广泛应用于机器人控制、自动驾驶等领域,取得了显著的成果。
总而言之,深度强化学习是一种结合了深度神经网络和强化学习的方法,能够从原始的感知数据中直接进行学习,并取得了广泛的应用和重要的突破。
阅读全文