pycharm深度学习预测波士顿房价代码
时间: 2023-11-15 07:59:55 浏览: 147
以下是一个使用PyCharm编写的深度学习预测波士顿房价的代码,其中使用了神经网络模型和相关的科学计算库、数据交换格式包和绘图工具包:
```
# 导入相关库
import numpy as np
import json
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
# 定义神经网络类
class Network(object):
def __init__(self, sizes):
self.num_layers = len(sizes)
self.sizes = sizes
self.biases = [np.zeros((y, 1)) for y in sizes[1:]]
self.weights = [np.random.randn(y, x) for x, y in zip(sizes[:-1], sizes[1:])]
def feedforward(self, a):
for b, w in zip(self.biases, self.weights):
a = sigmoid(np.dot(w, a) + b)
return a
def SGD(self, training_data, epochs, mini_batch_size, eta, test_data=None):
if test_data: n_test = len(test_data)
n = len(training_data)
for j in range(epochs):
np.random.shuffle(training_data)
mini_batches = [training_data[k:k+mini_batch_size] for k in range(0, n, mini_batch_size)]
for mini_batch in mini_batches:
self.update_mini_batch(mini_batch, eta)
if test_data:
print("Epoch {0}: {1} / {2}".format(j, self.evaluate(test_data), n_test))
else:
print("Epoch {0} complete".format(j))
def update_mini_batch(self, mini_batch, eta):
nabla_b = [np.zeros(b.shape) for b in self.biases]
nabla_w = [np.zeros(w.shape) for w in self.weights]
for x, y in mini_batch:
delta_nabla_b, delta_nabla_w = self.backprop(x, y)
nabla_b = [nb+dnb for nb, dnb in zip(nabla_b, delta_nabla_b)]
nabla_w = [nw+dnw for nw, dnw in zip(nabla_w, delta_nabla_w)]
self.weights = [w-(eta/len(mini_batch))*nw for w, nw in zip(self.weights, nabla_w)]
self.biases = [b-(eta/len(mini_batch))*nb for b, nb in zip(self.biases, nabla_b)]
def backprop(self, x, y):
nabla_b = [np.zeros(b.shape) for b in self.biases]
nabla_w = [np.zeros(w.shape) for w in self.weights]
activation = x
activations = [x]
zs = []
for b, w in zip(self.biases, self.weights):
z = np.dot(w, activation)+b
zs.append(z)
activation = sigmoid(z)
activations.append(activation)
delta = self.cost_derivative(activations[-1], y) * sigmoid_prime(zs[-1])
nabla_b[-1] = delta
nabla_w[-1] = np.dot(delta, activations[-2].transpose())
for l in range(2, self.num_layers):
z = zs[-l]
sp = sigmoid_prime(z)
delta = np.dot(self.weights[-l+1].transpose(), delta) * sp
nabla_b[-l] = delta
nabla_w[-l] = np.dot(delta, activations[-l-1].transpose())
return (nabla_b, nabla_w)
def evaluate(self, test_data):
test_results = [(np.argmax(self.feedforward(x)), y) for (x, y) in test_data]
return sum(int(x == y) for (x, y) in test_results)
def cost_derivative(self, output_activations, y):
return (output_activations-y)
# 定义sigmoid函数和其导数
def sigmoid(z):
return 1.0/(1.0+np.exp(-z))
def sigmoid_prime(z):
return sigmoid(z)*(1-sigmoid(z))
# 加载数据集
with open('housing.data', 'r') as f:
data = f.readlines()
data = [list(map(float, x.strip().split())) for x in data]
data = [(np.array(x[:-1]).reshape(13, 1), x[-1]) for x in data]
# 划分训练集和测试集
training_data, test_data = data[:-10], data[-10:]
# 初始化神经网络
net = Network([13, 5, 1])
# 训练神经网络
net.SGD(training_data, 1000, 10, 0.5, test_data=test_data)
# 绘制预测结果
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
x = [x[0][0] for x in test_data]
y = [x[0][1] for x in test_data]
z = [x[1] for x in test_data]
ax.scatter(x, y, z, c='r', marker='o')
x = np.arange(0, 1, 0.1)
y = np.arange(0, 1, 0.1)
x, y = np.meshgrid(x, y)
z = np.array([net.feedforward(np.array([xi, yi]).reshape(2, 1))[0][0] for xi, yi in zip(x, y)])
ax.plot_surface(x, y, z)
ax.set_xlabel('X Label')
ax.set_ylabel('Y Label')
ax.set_zlabel('Z Label')
plt.show()
```
阅读全文