np.squeeze()和np.unsqueeze()

时间: 2023-12-03 09:05:01 浏览: 267
np.squeeze()和np.unsqueeze()都是numpy中的函数,用于改变数组的维度。 np.squeeze()函数可以将数组中维度为1的维度去掉,从而降低数组的维度。例如,对于一个形状为(1,5)的数组a,使用np.squeeze(a)函数可以将其转换为形状为(5,)的数组。 np.unsqueeze()函数则是在数组的指定位置插入一个维度为1的维度,从而增加数组的维度。例如,对于一个形状为(5,)的数组a,使用np.unsqueeze(a,0)函数可以在第0个位置插入一个维度为1的维度,从而将其转换为形状为(1,5)的数组。
相关问题

np.squeeze()和np.unsqueeze()介绍和举例

np.squeeze()和np.unsqueeze()都是用于改变数组的维度的函数,但它们的作用是相反的。 np.squeeze()函数可以将数组中维度为1的维度去掉,从而降低数组的维度。如果指定了axis参数,则只有该轴为1时才会被去掉,否则会将所有为1的维度都去掉。下面是一个例子: 举例: import numpy as np arr = np.array([[[[1,2,3],[4,5,6]]]]) print(type(arr), arr, arr.shape, sep='\n') print("==========================") arr_1 = np.squeeze(arr, axis=0) print(type(arr_1), arr_1, arr_1.shape, sep='\n') print("==========================") arr_2 = np.squeeze(arr, axis=None) print(type(arr_2), arr_2, arr_2.shape, sep='\n') 输出结果为: <class 'numpy.ndarray'> [[[[1 2 3] [4 5 6]]]] (1, 1, 2, 3) ========================== <class 'numpy.ndarray'> [[[1 2 3] [4 5 6]]] (1, 2, 3) ========================== <class 'numpy.ndarray'> [[1 2 3] [4 5 6]] (2, 3) 可以看到,原数组arr的维度为(1,1,2,3),使用np.squeeze()函数去掉第一个维度后,得到的新数组arr_1的维度为(1,2,3),再去掉所有为1的维度后,得到的新数组arr_2的维度为(2,3)。 相反,np.unsqueeze()函数可以在数组的指定轴上增加一个维度,从而增加数组的维度。下面是一个例子: 举例: import numpy as np arr = np.array([1,2,3]) print(type(arr), arr, arr.shape, sep='\n') print("==========================") arr_1 = np.expand_dims(arr, axis=0) print(type(arr_1), arr_1, arr_1.shape, sep='\n') print("==========================") arr_2 = np.expand_dims(arr, axis=1) print(type(arr_2), arr_2, arr_2.shape, sep='\n') 输出结果为: <class 'numpy.ndarray'> [1 2 3] (3,) ========================== <class 'numpy.ndarray'> [[1 2 3]] (1, 3) ========================== <class 'numpy.ndarray'> [ ] (3, 1) 可以看到,原数组arr的维度为(3,),使用np.expand_dims()函数在第一个维度上增加一个维度后,得到的新数组arr_1的维度为(1,3),在第二个维度上增加一个维度后,得到的新数组arr_2的维度为(3,1)。

def test(model, path): model.eval() mean_loss = [] for s in ['val', 'test']: image_root = '{}/{}'.format(path, s) gt_root = '{}/{}'.format(path, s) test_loader = test_dataset(image_root, gt_root) dice_bank = [] iou_bank = [] loss_bank = [] acc_bank = [] for i in range(test_loader.size): image, gt = test_loader.load_data() image = image.cuda() with torch.no_grad(): _, _, res = model(image) loss = structure_loss(res, torch.tensor(gt).unsqueeze(0).unsqueeze(0).cuda()) res = res.sigmoid().data.cpu().numpy().squeeze() gt = 1*(gt>0.5) res = 1*(res > 0.5) dice = mean_dice_np(gt, res) iou = mean_iou_np(gt, res) acc = np.sum(res == gt) / (res.shape[0]*res.shape[1]) loss_bank.append(loss.item()) dice_bank.append(dice) iou_bank.append(iou) acc_bank.append(acc) print('{} Loss: {:.4f}, Dice: {:.4f}, IoU: {:.4f}, Acc: {:.4f}'. format(s, np.mean(loss_bank), np.mean(dice_bank), np.mean(iou_bank), np.mean(acc_bank))) mean_loss.append(np.mean(loss_bank)) return mean_loss[0] 中文解释每一句

这段代码是用于测试一个图像分割模型的性能。首先,模型被设置为评估模式,接着对于验证集和测试集分别进行测试。数据集的路径被设置为image_root和gt_root。然后,使用test_dataset函数加载测试集的数据。接下来,对于每一个样本,图像和标注被加载并送入模型进行预测。计算预测结果和标注之间的结构损失并将结果转换为numpy数组。计算Dice, IoU和准确率等性能度量,并将其存储在相应的bank中。最后,输出测试集上的平均损失,Dice, IoU和准确率等性能度量。整个测试过程是在无梯度下进行的。函数的返回值是验证集上的平均损失。
阅读全文

相关推荐

import open3d as o3d import numpy as np import torch import torch.nn.functional as F import matplotlib.pyplot as plt # 读取点云文件 pcd = o3d.io.read_point_cloud(r"E:\BISHE\pcd\neuvsnap_0418_154523.pcd") def gaussian_filter(input, kernel_size=3, sigma=0.5): # Create a 1D Gaussian kernel kernel = np.exp(-np.square(np.arange(-kernel_size // 2 + 1, kernel_size // 2 + 1)) / (2 * np.square(sigma))) kernel = torch.FloatTensor(kernel).unsqueeze(0).unsqueeze(0) # Normalize the kernel kernel = kernel / kernel.sum() # Apply the filter using conv2d padding = kernel_size // 2 filtered = F.conv2d(input.unsqueeze(0), kernel, padding=padding, groups=input.size(1)) return filtered.squeeze(0) # 将点云转换为 PyTorch 张量 points = np.asarray(pcd.points) points = torch.from_numpy(points).float() # 使用简单的高斯滤波器进行去噪 points = gaussian_filter(points, kernel_size=3, sigma=0.5) # 将点云转换回 numpy 数组并可视化 points_np = points.numpy() pcd_processed = o3d.geometry.PointCloud() pcd_processed.points = o3d.utility.Vector3dVector(points_np) o3d.visualization.draw_geometries([pcd_processed]) # 计算点云体积并打印结果 volume = 0 for i in range(points_np.shape[0]): volume += points_np[i, 0] * points_np[i, 1] * points_np[i, 2] print("Volume:", volume) # 将点云和体积测量结果导出 o3d.io.write_point_cloud("example_processed.pcd", pcd_processed) with open("volume.txt", "w") as f: f.write(str(volume))运行后报错Traceback (most recent call last): File "E:/BISHE/Pointnet2/main.py", line 30, in <module> points = gaussian_filter(points, kernel_size=3, sigma=0.5) File "E:/BISHE/Pointnet2/main.py", line 21, in gaussian_filter filtered = F.conv2d(input.unsqueeze(0), kernel, padding=padding, groups=input.size(1)) RuntimeError: expected stride to be a single integer value or a list of 1 values to match the convolution dimensions, but got stride=[1, 1]

from skimage.segmentation import slic, mark_boundaries import torchvision.transforms as transforms import numpy as np from PIL import Image import matplotlib.pyplot as plt import torch.nn as nn import torch # 定义超像素池化层 class SuperpixelPooling(nn.Module): def init(self, n_segments): super(SuperpixelPooling, self).init() self.n_segments = n_segments def forward(self, x): # 使用 SLIC 算法生成超像素标记图 segments = slic(x.permute(0, 2, 3, 1).numpy(), n_segments=self.n_segments, compactness=10) # 将超像素标记图转换为张量 segments_tensor = torch.from_numpy(segments).unsqueeze(0).unsqueeze(0) # 将张量 x 与超像素标记图张量 segments_tensor 进行逐元素相乘 pooled = x * segments_tensor.float() # 在超像素维度上进行最大池化 pooled = nn.AdaptiveMaxPool2d((self.n_segments, 1))(pooled) # 压缩超像素维度 pooled = pooled.squeeze(3) # 返回池化后的特征图 return pooled # 加载图像 image = Image.open('3.jpg') # 转换为 PyTorch 张量 transform = transforms.ToTensor() img_tensor = transform(image).unsqueeze(0) # 将 PyTorch 张量转换为 Numpy 数组 img_np = img_tensor.numpy().transpose(0, 2, 3, 1)[0] # 使用 SLIC 算法生成超像素标记图 segments = slic(img_np, n_segments=60, compactness=10) # 将超像素标记图转换为张量 segments_tensor = torch.from_numpy(segments).unsqueeze(0).float() # 将超像素索引映射可视化 plt.imshow(segments, cmap='gray') plt.show() # 将 Numpy 数组转换为 PIL 图像 segment_img = Image.fromarray((mark_boundaries(img_np, segments) * 255).astype(np.uint8)) # 保存超像素索引映射可视化 segment_img.save('segment_map.jpg') # 使用超像素池化层进行池化 pooling_layer = SuperpixelPooling(n_segments=60) pooled_tensor = pooling_layer(img_tensor) # 将超像素池化后的特征图可视化 plt.imshow(pooled_tensor.squeeze().numpy().transpose(1, 0), cmap='gray') plt.show() ,上述代码出现问题:RuntimeError: adaptive_max_pool2d(): Expected 3D or 4D tensor, but got: [1, 1, 3, 512, 512],如何修改

import numpy as np import pandas as pd import matplotlib.pyplot as plt import PIL import torch from torchvision import transforms import torchvision #调用已经训练好的FCN语义分割网络 model = torchvision.models.segmentation.fcn_resnet101(pretrained=True) model.eval() #读取照片 image=PIL.Image.open('1234.jpg') #照片进行预处理 image_transf=transforms.Compose([ transforms.ToTensor(), transforms.Normalize(mean=[0.485,0.456,0.406], std=[0.229,0.224,0.225]) ] ) image_tensor=image_transf(image).unsqueeze(0) output=model(image_tensor)['out'] output.shape #读取图片,进行分割,总共21个通道,因为在21个数据集上训练 #转化为2维图像 outputarg=torch.argmax(output.squeeze(),dim=0).numpy() outputarg def decode_seqmaps(image,label_colors,nc=21): r=np.zeros_like(image).astype(np.uint8) g=np.zeros_like(image).astype(np.uint8) b=np.zeros_like(image).astype(np.uint8) for cla in range(0,nc): idx = image == cla r[idx] = label_colors[cla,0] g[idx] = label_colors[cla,1] b[idx] = label_colors[cla,2] rgbimage= np.stack([r,g,b],axis=2) return rgbimage import os os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE" label_colors =np.array([(0,0,0), #0=background (128,0,0),(0,128,0),(128,128,0),(0,0,128), #1=airplane,2=bicycle,3=bird,4=boat (128,0,128),(0,128,128),(128,128,128),(64,0,0), #6=bus,7=car,8=cat,9=chair (192,0,0),(64,128,0),(192,128,0),(64,0,128), #10=cow,11=dining table,12=dog,13=horse (192,0,128),(64,128,128),(192,128,128),(0,64,0), #14=motorbike,15=person,16=potted plant,17=sheep (128,64,0),(0,192,0),(128,192,0),(0,64,128) #18=sofa,19=train,20=tv/monitor ]) outputrgb=decode_seqmaps(outputarg,label_colors) plt.figure(figsize=(20,8)) plt.subplot(1,2,1) plt.imshow(image) plt.axis('off') plt.subplot(1,2,2) plt.imshow(outputrgb) plt.axis('off') plt.subplots_adjust(wspace=0.05) plt.show()使用了哪些深度学习的模型和方法

import cv2 import numpy as np import torch import torch.nn.functional as F from skimage.segmentation import slic import matplotlib.pyplot as plt from skimage.segmentation import mark_boundaries from skimage import img_as_float # 定义超像素数量 num_segments = 100 # 加载图像 A 和 B img_a = cv2.imread('img_a.jpg') img_b = cv2.imread('img_b.jpg') # 对图像 A 进行超像素分割,并获取每个超像素块的像素范围 segments_a = slic(img_as_float(img_a), n_segments=num_segments, sigma=5) pixel_ranges = [] for i in range(num_segments): mask = (segments_a == i) indices = np.where(mask)[1] pixel_range = (np.min(indices), np.max(indices)) pixel_ranges.append(pixel_range) # 将像素范围应用到图像 B 上实现超像素分割 segments_b = np.zeros_like(segments_a) for i in range(num_segments): pixel_range = pixel_ranges[i] segment_b = img_b[:, pixel_range[0]:pixel_range[1], :] segment_b = torch.from_numpy(segment_b.transpose(2, 0, 1)).unsqueeze(0).float() segment_b = F.interpolate(segment_b, size=(img_b.shape[0], pixel_range[1] - pixel_range[0]), mode='bilinear', align_corners=True) segment_b = segment_b.squeeze(0).numpy().transpose(1, 2, 0).astype(np.uint8) gray = cv2.cvtColor(segment_b, cv2.COLOR_BGR2GRAY) _, mask = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY) segments_b[np.where(mask)] = i # 可视化超像素分割结果 fig = plt.figure('Superpixels') ax = fig.add_subplot(1, 2, 1) ax.imshow(mark_boundaries(img_as_float(cv2.cvtColor(img_a, cv2.COLOR_BGR2RGB)), segments_a)) ax = fig.add_subplot(1, 2, 2) ax.imshow(mark_boundaries(img_as_float(cv2.cvtColor(img_b, cv2.COLOR_BGR2RGB)), segments_b)) plt.axis("off") plt.show(),上述代码中segments_a = slic(img_as_float(img_a), n_segments=num_segments, sigma=5)出现错误:ValueError: Cannot convert from object to float64.

from skimage.segmentation import slic, mark_boundaries import torchvision.transforms as transforms import numpy as np from PIL import Image import matplotlib.pyplot as plt import torch.nn as nn import torch # 定义超像素池化层 class SuperpixelPooling(nn.Module): def init(self, n_segments): super(SuperpixelPooling, self).init() self.n_segments = n_segments def forward(self, x): # 获取超像素标记图 segments = slic(x, n_segments=self.n_segments, compactness=10) # 将超像素标记图转换为张量 segments_tensor = torch.from_numpy(segments).unsqueeze(0).float() # 在超像素维度上进行最大池化 pooled = nn.AdaptiveMaxPool2d((self.n_segments, 1))(x * segments_tensor) # 压缩超像素维度 pooled = pooled.squeeze(3) # 返回池化后的特征图 return pooled # 加载图像 image = Image.open('3.jpg') # 转换为 PyTorch 张量 transform = transforms.ToTensor() img_tensor = transform(image).unsqueeze(0) # 将 PyTorch 张量转换为 Numpy 数组 img_np = img_tensor.numpy().transpose(0, 2, 3, 1)[0] # 使用 SLIC 算法生成超像素标记图 segments = slic(img_np, n_segments=60, compactness=10) # 将超像素标记图转换为张量 segments_tensor = torch.from_numpy(segments).unsqueeze(0).float() # 将超像素索引映射可视化 plt.imshow(segments, cmap='gray') plt.show() # 将 Numpy 数组转换为 PIL 图像 segment_img = Image.fromarray((mark_boundaries(img_np, segments) * 255).astype(np.uint8)) # 保存超像素索引映射可视化 segment_img.save('segment_map.jpg') # 使用超像素池化层进行池化 pooling_layer = SuperpixelPooling(n_segments=60) pooled_tensor = pooling_layer(img_tensor) # 将超像素池化后的特征图可视化 plt.imshow(pooled_tensor.squeeze().numpy().transpose(1, 0), cmap='gray') plt.show() 上述代码出现问题: pooled = nn.AdaptiveMaxPool2d((self.n_segments, 1))(x * segments_tensor) RuntimeError: The size of tensor a (512) must match the size of tensor b (3) at non-singleton dimension 2

coding=UTF-8 from flask import Flask, render_template, request, send_from_directory from werkzeug.utils import secure_filename from iconflow.model.colorizer import ReferenceBasedColorizer from skimage.feature import canny as get_canny_feature from torchvision import transforms from PIL import Image import os import datetime import torchvision import cv2 import numpy as np import torch import einops transform_Normalize = torchvision.transforms.Compose([ transforms.Normalize(0.5, 1.0)]) ALLOWED_EXTENSIONS = set([‘png’, ‘jpg’, ‘jpeg’]) app = Flask(name) train_model = ReferenceBasedColorizer() basepath = os.path.join( os.path.dirname(file), ‘images’) # 当前文件所在路径 def allowed_file(filename): return ‘.’ in filename and filename.rsplit(‘.’, 1)[1] in ALLOWED_EXTENSIONS def load_model(log_path=‘/mnt/4T/lzq/IconFlowPaper/checkpoints/normal_model.pt’): global train_model state = torch.load(log_path) train_model.load_state_dict(state[‘net’]) @app.route(“/”, methods=[“GET”, “POST”]) def hello(): if request.method == ‘GET’: return render_template(‘upload.html’) @app.route(‘/upload’, methods=[“GET”, “POST”]) def upload_lnk(): if request.method == ‘GET’: return render_template(‘upload.html’) if request.method == ‘POST’: try: file = request.files['uploadimg'] except Exception: return None if file and allowed_file(file.filename): format = "%Y-%m-%dT%H:%M:%S" now = datetime.datetime.utcnow().strftime(format) filename = now + '_' + file.filename filename = secure_filename(filename) basepath = os.path.join( os.path.dirname(file), ‘images’) # 当前文件所在路径 # upload_path = os.path.join(basepath,secure_filename(f.filename)) file.save(os.path.join(basepath, filename)) else: filename = None return filename @app.route(‘/download/string:filename’, methods=[‘GET’]) def download(filename): if request.method == “GET”: if os.path.isfile(os.path.join(basepath, filename)): return send_from_directory(basepath, filename, as_attachment=True) pass def get_contour(img): x = np.array(img) canny = 0 for layer in np.rollaxis(x, -1): canny |= get_canny_feature(layer, 0) canny = canny.astype(np.uint8) * 255 kernel = np.array([ [0, 1, 1, 1, 0], [1, 1, 1, 1, 1], [1, 1, 1, 1, 1], [1, 1, 1, 1, 1], [0, 1, 1, 1, 0], ], dtype=np.uint8) canny = cv2.dilate(canny, kernel) # canny = Image.fromarray(canny) return canny @app.route(‘/embedding//’, methods=[“GET”, “POST”]) def icontran(img, reference): global train_model if request.method == ‘POST’: imgPath = os.path.join(basepath, img) referencePath = os.path.join(basepath, reference) img = cv2.imread(imgPath) if img is None or img.size <= 0: return None contour = get_contour(img).astype(np.float32).copy() contour = 255 - contour reference = cv2.imread(referencePath).astype(np.float32) reference = cv2.cvtColor(reference, cv2.COLOR_BGR2RGB) reference = transform_Normalize(torch.from_numpy(reference).permute(2, 0, 1).unsqueeze(0).float()/ 255.0) contour = transform_Normalize(torch.from_numpy(contour).unsqueeze(0).unsqueeze(0).float()/ 255.0) train_model.eval() transfer = train_model(contour, reference) transfer = transfer.squeeze(0) transfer = (transfer + 0.5).clamp(0, 1).mul_(255).permute(1, 2, 0).type(torch.uint8).numpy() transfer = transfer.numpy() cv2.imwrite(imgPath, transfer) return basepath # success if name == “main”: load_model() app.run(host=‘10.21.16.144’, port=9999, debug=True) 用puthon写一个调用这个服务器的gui

import torch import os import torch.nn as nn import torch.optim as optim import numpy as np import random import matplotlib.pyplot as plt class Net(nn.Module): def init(self): super(Net, self).init() self.conv1 = nn.Conv2d(1, 16, kernel_size=3,stride=1) self.pool = nn.MaxPool2d(kernel_size=2,stride=2) self.conv2 = nn.Conv2d(16, 32, kernel_size=3,stride=1) self.fc1 = nn.Linear(32 * 9 * 9, 120) self.fc2 = nn.Linear(120, 84) self.fc3 = nn.Linear(84, 2) def forward(self, x): x = self.pool(nn.functional.relu(self.conv1(x))) x = self.pool(nn.functional.relu(self.conv2(x))) x = x.view(-1, 32 * 9 * 9) x = nn.functional.relu(self.fc1(x)) x = nn.functional.relu(self.fc2(x)) x = self.fc3(x) return x net = Net() criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9) folder_path1 = 'random_matrices2' # 创建空的tensor x = torch.empty((40, 1, 42, 42)) # 遍历文件夹内的文件,将每个矩阵转化为tensor并存储 for j in range(40): for j in range(40): file_name = 'matrix_{}.npy'.format(i) file_path1 = os.path.join(folder_path1, file_name) matrix1 = np.load(file_path1) x[j] = torch.from_numpy(matrix1).unsqueeze(0) folder_path2 = 'random_label2' y = torch.empty((40, )) for k in range(40): for k in range(40): file_name = 'label_{}.npy'.format(i) file_path2 = os.path.join(folder_path2, file_name) matrix2 = np.load(file_path2) y[k] = torch.from_numpy(matrix2).unsqueeze(0) losses = [] for epoch in range(10): running_loss = 0.0 for i in range(40): inputs, labels = x[i], y[i] optimizer.zero_grad() outputs = net(inputs) loss = criterion(outputs, labels.squeeze(1)) loss.backward() optimizer.step() running_loss += loss.item() losses.append(running_loss / 40) print('[%d] loss: %.3f' % (epoch + 1, running_loss / 40)) print('Finished Training') plt.plot(losses) plt.xlabel('Epoch') plt.ylabel('Loss') plt.show() 报错:IndexError: Dimension out of range (expected to be in range of [-1, 0], but got 1) 怎么修改?

修改import torch import torchvision.models as models vgg16_model = models.vgg16(pretrained=True) import torch.nn as nn import torch.nn.functional as F import torchvision.transforms as transforms from PIL import Image # 加载图片 img_path = "pic.jpg" img = Image.open(img_path) # 定义预处理函数 preprocess = transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) # 预处理图片,并添加一个维度(batch_size) img_tensor = preprocess(img).unsqueeze(0) # 提取特征 features = vgg16_model.features(img_tensor) import numpy as np import matplotlib.pyplot as plt def deconv_visualization(model, features, layer_idx, iterations=30, lr=1, figsize=(10, 10)): # 获取指定层的输出特征 output = features[layer_idx] # 定义随机输入张量,并启用梯度计算 #input_tensor = torch.randn(output.shape, requires_grad=True) input_tensor = torch.randn(1, 3, output.shape[2], output.shape[3], requires_grad=True) # 定义优化器 optimizer = torch.optim.Adam([input_tensor], lr=lr) for i in range(iterations): # 将随机张量输入到网络中,得到对应的输出 model.zero_grad() #x = model.features(input_tensor) x = model.features:layer_idx # 计算输出与目标特征之间的距离,并进行反向传播 loss = F.mse_loss(x[layer_idx], output) loss.backward() # 更新输入张量 optimizer.step() # 反归一化 input_tensor = (input_tensor - input_tensor.min()) / (input_tensor.max() - input_tensor.min()) # 将张量转化为numpy数组 img = input_tensor.squeeze(0).detach().numpy().transpose((1, 2, 0)) # 绘制图像 plt.figure(figsize=figsize) plt.imshow(img) plt.axis("off") plt.show() # 可视化第一层特征 deconv_visualization(vgg16_model, features, 0)使其不产生报错IndexError: tuple index out of range

zip
zip

大家在看

recommend-type

自动化-ACS800变频器知识培训(0619)[1]专题培训课件.ppt

自动化-ACS800变频器知识培训(0619)[1]专题培训课件.ppt
recommend-type

贝叶斯分类.docx

适合初学者理解的贝叶斯分类的r代码,任何编程的背后都是理论的支撑,当初花了一天半编的该代码,欢迎指正。
recommend-type

IPC-7351 使用说明

IPC-7351 软件,零件封装库制作标准软件的中文使用说明。
recommend-type

子程序参数传递学习总结.docx

关于kuka编程知识的最新总结,全局子程序与局部子程序
recommend-type

三菱FX3U-485ADP-MB通讯三种变频器程序 已实现测试的变频器:施耐德ATV312, 三菱E700,台达VFD-M三款变

三菱FX3U-485ADP-MB通讯三种变频器程序 已实现测试的变频器:施耐德ATV312, 三菱E700,台达VFD-M三款变频器,支持rtu的协议的变频器都可实现。 需要硬件:FX3UPLC,FX3U-485ADP-MB通信扩展模块,施耐德ATV312变频器或台达vfd-m变频器或三菱E700变频器,fx3u-cnv-bd 。 通过modbus rtu通讯方式 ,可以实现控制正反转,启动停止,触摸屏直接频率设定,以及对频率电流,运行状态的监控。 反馈及时,无延迟,使用方便。 内容包含plc和触摸屏程序,参数设置,接线及教程。 这里有三种变频器程序,可以通过三菱FX3U-485ADP-MB通信扩展模块实现测试。已经测试过的变频器包括施耐德ATV312、三菱E700和台达VFD-M,只要支持rtu协议的变频器都可以使用。 为了实现这个功能,您需要以下硬件设备:FX3UPLC、FX3U-485ADP-MB通信扩展模块、施耐德ATV312变频器或台达VFD-M变频器或三菱E700变频器,以及fx3u-cnv-bd。 通过modbus rtu通信方式,您可以实现控制正反转、启动停止,还可

最新推荐

recommend-type

基于遗传算法的动态优化物流配送中心选址问题研究(Matlab源码+详细注释),遗传算法与免疫算法在物流配送中心选址问题的应用详解(源码+详细注释,Matlab编写,含动态优化与迭代,结果图展示),遗传

基于遗传算法的动态优化物流配送中心选址问题研究(Matlab源码+详细注释),遗传算法与免疫算法在物流配送中心选址问题的应用详解(源码+详细注释,Matlab编写,含动态优化与迭代,结果图展示),遗传算法 求解物流配送中心选址问题 源码+详细注释(Matlab编写) 有两种解决选址问题代码,说明如下: 代码一:免疫算法物流配送中心选址 模型应用场景: 1.配送中心能够配送的总量≥各揽收站需求之和 2.一个配送中心可为多个揽收站配送物,但一个快递揽收站仅由一个配送中心供应 需求点,需求点容量,配送中心数目可以根据实际随意更改(结果图如图1,2,3,4所示) 代码二:遗传算法配送中心选址 可以修改需求点坐标,需求点的需求量,备选中心坐标,配送中心个数 注:2≤备选中心≤20,需求点中心可以无限个 [new]优化与迭代过程是动态更新的喔[火]有需要的可以直接拿哈 (结果图如图5,6,7,8所示) 代码一经出不予 保证运行 可回答简单问题[托腮] ,核心关键词:遗传算法;物流配送中心选址问题;免疫算法;源码;Matlab编写;模型应用场景;需求点;配送中心;备选中心坐标;优化与迭代过程。
recommend-type

SpringBoot博客项目.zip(毕设&课设&实训&大作业&竞赛&项目)

项目工程资源经过严格测试运行并且功能上ok,可实现复现复刻,拿到资料包后可实现复现出一样的项目,本人系统开发经验充足(全栈全领域),有任何使用问题欢迎随时与我联系,我会抽时间努力为您解惑,提供帮助 【资源内容】:包含源码+工程文件+说明(如有)等。答辩评审平均分达到96分,放心下载使用!可实现复现;设计报告也可借鉴此项目;该资源内项目代码都经过测试运行;功能ok 【项目价值】:可用在相关项目设计中,皆可应用在项目、毕业设计、课程设计、期末/期中/大作业、工程实训、大创等学科竞赛比赛、初期项目立项、学习/练手等方面,可借鉴此优质项目实现复刻,设计报告也可借鉴此项目,也可基于此项目来扩展开发出更多功能 【提供帮助】:有任何使用上的问题欢迎随时与我联系,抽时间努力解答解惑,提供帮助 【附带帮助】:若还需要相关开发工具、学习资料等,我会提供帮助,提供资料,鼓励学习进步 下载后请首先打开说明文件(如有);整理时不同项目所包含资源内容不同;项目工程可实现复现复刻,如果基础还行,也可在此程序基础上进行修改,以实现其它功能。供开源学习/技术交流/学习参考,勿用于商业用途。质量优质,放心下载使用
recommend-type

基于改进蚁群算法与动态窗口法的多机器人路径规划与避障算法研究:去除冗余点、实现全局与局部实时动态规划,基于改进蚁群算法与动态窗口法的多机器人路径规划与避障算法研究:去除冗余点,实现全局与局部实时动态规

基于改进蚁群算法与动态窗口法的多机器人路径规划与避障算法研究:去除冗余点、实现全局与局部实时动态规划,基于改进蚁群算法与动态窗口法的多机器人路径规划与避障算法研究:去除冗余点,实现全局与局部实时动态规划及路径平滑,改进蚁群算法多机器人路径规划算法 改进蚁群算法+去除多余冗点(路径平滑)+全局和局部多移动机器人实时动态规划。 代码注释完全易懂,效果请看下图。 预先声明:该程序为版权所述,仅供学习参考使用,蚁群算法 动态窗口法 dwa 多机器人 路径规划算法 基于改进蚁群算法实现静态已知障碍物避障,基于动态窗口算法实现静态未知障碍物避障,动态未知障碍物避障 ,核心关键词: 改进蚁群算法; 多机器人路径规划算法; 去除多余冗点; 路径平滑; 全局和局部动态规划; 静态已知障碍物避障; 动态窗口法(DWA); 静态未知障碍物避障; 动态未知障碍物避障。,基于改进蚁群算法的机器人多路径规划与平滑技术
recommend-type

PHP集成Autoprefixer让CSS自动添加供应商前缀

标题和描述中提到的知识点主要包括:Autoprefixer、CSS预处理器、Node.js 应用程序、PHP 集成以及开源。 首先,让我们来详细解析 Autoprefixer。 Autoprefixer 是一个流行的 CSS 预处理器工具,它能够自动将 CSS3 属性添加浏览器特定的前缀。开发者在编写样式表时,不再需要手动添加如 -webkit-, -moz-, -ms- 等前缀,因为 Autoprefixer 能够根据各种浏览器的使用情况以及官方的浏览器版本兼容性数据来添加相应的前缀。这样可以大大减少开发和维护的工作量,并保证样式在不同浏览器中的一致性。 Autoprefixer 的核心功能是读取 CSS 并分析 CSS 规则,找到需要添加前缀的属性。它依赖于浏览器的兼容性数据,这一数据通常来源于 Can I Use 网站。开发者可以通过配置文件来指定哪些浏览器版本需要支持,Autoprefixer 就会自动添加这些浏览器的前缀。 接下来,我们看看 PHP 与 Node.js 应用程序的集成。 Node.js 是一个基于 Chrome V8 引擎的 JavaScript 运行时环境,它使得 JavaScript 可以在服务器端运行。Node.js 的主要特点是高性能、异步事件驱动的架构,这使得它非常适合处理高并发的网络应用,比如实时通讯应用和 Web 应用。 而 PHP 是一种广泛用于服务器端编程的脚本语言,它的优势在于简单易学,且与 HTML 集成度高,非常适合快速开发动态网站和网页应用。 在一些项目中,开发者可能会根据需求,希望把 Node.js 和 PHP 集成在一起使用。比如,可能使用 Node.js 处理某些实时或者异步任务,同时又依赖 PHP 来处理后端的业务逻辑。要实现这种集成,通常需要借助一些工具或者中间件来桥接两者之间的通信。 在这个标题中提到的 "autoprefixer-php",可能是一个 PHP 库或工具,它的作用是把 Autoprefixer 功能集成到 PHP 环境中,从而使得在使用 PHP 开发的 Node.js 应用程序时,能够利用 Autoprefixer 自动处理 CSS 前缀的功能。 关于开源,它指的是一个项目或软件的源代码是开放的,允许任何个人或组织查看、修改和分发原始代码。开源项目的好处在于社区可以一起参与项目的改进和维护,这样可以加速创新和解决问题的速度,也有助于提高软件的可靠性和安全性。开源项目通常遵循特定的开源许可证,比如 MIT 许可证、GNU 通用公共许可证等。 最后,我们看到提到的文件名称 "autoprefixer-php-master"。这个文件名表明,该压缩包可能包含一个 PHP 项目或库的主分支的源代码。"master" 通常是源代码管理系统(如 Git)中默认的主要分支名称,它代表项目的稳定版本或开发的主线。 综上所述,我们可以得知,这个 "autoprefixer-php" 工具允许开发者在 PHP 环境中使用 Node.js 的 Autoprefixer 功能,自动为 CSS 规则添加浏览器特定的前缀,从而使得开发者可以更专注于内容的编写而不必担心浏览器兼容性问题。
recommend-type

揭秘数字音频编码的奥秘:非均匀量化A律13折线的全面解析

# 摘要 数字音频编码技术是现代音频处理和传输的基础,本文首先介绍数字音频编码的基础知识,然后深入探讨非均匀量化技术,特别是A律压缩技术的原理与实现。通过A律13折线模型的理论分析和实际应用,本文阐述了其在保证音频信号质量的同时,如何有效地降低数据传输和存储需求。此外,本文还对A律13折线的优化策略和未来发展趋势进行了展望,包括误差控制、算法健壮性的提升,以及与新兴音频技术融合的可能性。 # 关键字 数字音频编码;非均匀量化;A律压缩;13折线模型;编码与解码;音频信号质量优化 参考资源链接:[模拟信号数字化:A律13折线非均匀量化解析](https://wenku.csdn.net/do
recommend-type

arduino PAJ7620U2

### Arduino PAJ7620U2 手势传感器 教程 #### 示例代码与连接方法 对于Arduino开发PAJ7620U2手势识别传感器而言,在Arduino IDE中的项目—加载库—库管理里找到Paj7620并下载安装,完成后能在示例里找到“Gesture PAJ7620”,其中含有两个示例脚本分别用于9种和15种手势检测[^1]。 关于连线部分,仅需连接四根线至Arduino UNO开发板上的对应位置即可实现基本功能。具体来说,这四条线路分别为电源正极(VCC),接地(GND),串行时钟(SCL)以及串行数据(SDA)[^1]。 以下是基于上述描述的一个简单实例程序展示如
recommend-type

网站啄木鸟:深入分析SQL注入工具的效率与限制

网站啄木鸟是一个指的是一类可以自动扫描网站漏洞的软件工具。在这个文件提供的描述中,提到了网站啄木鸟在发现注入漏洞方面的功能,特别是在SQL注入方面。SQL注入是一种常见的攻击技术,攻击者通过在Web表单输入或直接在URL中输入恶意的SQL语句,来欺骗服务器执行非法的SQL命令。其主要目的是绕过认证,获取未授权的数据库访问权限,或者操纵数据库中的数据。 在这个文件中,所描述的网站啄木鸟工具在进行SQL注入攻击时,构造的攻击载荷是十分基础的,例如 "and 1=1--" 和 "and 1>1--" 等。这说明它的攻击能力可能相对有限。"and 1=1--" 是一个典型的SQL注入载荷示例,通过在查询语句的末尾添加这个表达式,如果服务器没有对SQL注入攻击进行适当的防护,这个表达式将导致查询返回真值,从而使得原本条件为假的查询条件变为真,攻击者便可以绕过安全检查。类似地,"and 1>1--" 则会检查其后的语句是否为假,如果查询条件为假,则后面的SQL代码执行时会被忽略,从而达到注入的目的。 描述中还提到网站啄木鸟在发现漏洞后,利用查询MS-sql和Oracle的user table来获取用户表名的能力不强。这表明该工具可能无法有效地探测数据库的结构信息或敏感数据,从而对数据库进行进一步的攻击。 关于实际测试结果的描述中,列出了8个不同的URL,它们是针对几个不同的Web应用漏洞扫描工具(Sqlmap、网站啄木鸟、SqliX)进行测试的结果。这些结果表明,针对提供的URL,Sqlmap和SqliX能够发现注入漏洞,而网站啄木鸟在多数情况下无法识别漏洞,这可能意味着它在漏洞检测的准确性和深度上不如其他工具。例如,Sqlmap在针对 "http://www.2cto.com/news.php?id=92" 和 "http://www.2cto.com/article.asp?ID=102&title=Fast food marketing for children is on the rise" 的URL上均能发现SQL注入漏洞,而网站啄木鸟则没有成功。这可能意味着网站啄木鸟的检测逻辑较为简单,对复杂或隐蔽的注入漏洞识别能力不足。 从这个描述中,我们也可以了解到,在Web安全测试中,工具的多样性选择是十分重要的。不同的安全工具可能对不同的漏洞和环境有不同的探测能力,因此在实际的漏洞扫描过程中,安全测试人员需要选择合适的工具组合,以尽可能地全面地检测出应用中存在的漏洞。 在标签中指明了这是关于“sql注入”的知识,这表明了文件主题的核心所在。SQL注入是一种常见的网络攻击方式,安全测试人员、开发人员和网络管理员都需要对此有所了解,以便进行有效的防御和检测。 最后,提到了压缩包子文件的文件名称列表,其中包含了三个文件:setup.exe、MD5.exe、说明_Readme.html。这里提供的信息有限,但可以推断setup.exe可能是一个安装程序,MD5.exe可能是一个计算文件MD5散列值的工具,而说明_Readme.html通常包含的是软件的使用说明或者版本信息等。这些文件名暗示了在进行网站安全测试时,可能涉及到安装相关的软件工具,以及进行文件的校验和阅读相应的使用说明。然而,这些内容与文件主要描述的web安全漏洞检测主题不是直接相关的。
recommend-type

【GPStoolbox使用技巧大全】:20个实用技巧助你精通GPS数据处理

# 摘要 GPStoolbox是一个广泛应用于GPS数据处理的软件工具箱,它提供了从数据导入、预处理、基本分析到高级应用和自动化脚本编写的全套功能。本文介绍了GPStoolbox的基本概况、安装流程以及核心功能,探讨了如何
recommend-type

spring boot怎么配置maven

### 如何在 Spring Boot 项目中正确配置 Maven #### pom.xml 文件设置 `pom.xml` 是 Maven 项目的核心配置文件,在 Spring Boot 中尤为重要,因为其不仅管理着所有的依赖关系还控制着项目的构建流程。对于 `pom.xml` 的基本结构而言,通常包含如下几个部分: - **Project Information**: 定义了关于项目的元数据,比如模型版本、组ID、工件ID和版本号等基本信息[^1]。 ```xml <project xmlns="http://maven.apache.org/POM/4.0.0
recommend-type

我的个人简历HTML模板解析与应用

根据提供的文件信息,我们可以推断出这些内容与一个名为“My Resume”的个人简历有关,并且这份简历使用了HTML技术来构建。以下是从标题、描述、标签以及文件名称列表中提取出的相关知识点。 ### 标题:“my_resume:我的简历” #### 知识点: 1. **个人简历的重要性:** 简历是个人求职、晋升、转行等职业发展活动中不可或缺的文件,它概述了个人的教育背景、工作经验、技能及成就等关键信息,供雇主或相关人士了解求职者资质。 2. **简历制作的要点:** 制作简历时,应注重排版清晰、逻辑性强、突出重点。使用恰当的标题和小标题,合理分配版面空间,并确保内容的真实性和准确性。 ### 描述:“我的简历” #### 知识点: 1. **简历个性化:** 描述中的“我的简历”强调了个性化的重要性。每份简历都应当根据求职者的具体情况和目标岗位要求定制,确保简历内容与申请职位紧密相关。 2. **内容的针对性:** 描述表明简历应具有针对性,即在不同的求职场合下可能需要不同的简历版本,以突出与职位最相关的信息。 ### 标签:“HTML” #### 知识点: 1. **HTML基础:** HTML(HyperText Markup Language)是构建网页的标准标记语言。它定义了网页内容的结构,通过标签(tag)对信息进行组织,如段落(<p>)、标题(<h1>至<h6>)、图片(<img>)、链接(<a>)等。 2. **简历的在线呈现:** 使用HTML创建在线简历,可以让求职者以网页的形式展示自己。这种方式除了文字信息外,还可以嵌入多媒体元素,如视频、图表,增强简历的表现力。 3. **简历的响应式设计:** 随着移动设备的普及,确保简历在不同设备上(如PC、平板、手机)均能良好展示变得尤为重要。利用HTML结合CSS和JavaScript,可以创建适应不同屏幕尺寸的响应式简历。 4. **SEO(搜索引擎优化):** 使用HTML时,合理使用元标签(meta tags)如<meta name="description">可以帮助简历在搜索引擎中获得更好的可见性,从而增加被潜在雇主发现的机会。 ### 压缩包子文件的文件名称列表:“my_resume-main” #### 知识点: 1. **项目组织结构:** 文件名称列表中的“my_resume-main”暗示了一个可能的项目结构。在这个结构中,“main”可能指的是这个文件是主文件,例如HTML文件可能是整个简历网站的入口。 2. **压缩和部署:** “压缩包子文件”可能是指将多个文件打包成一个压缩包。在前端开发中,通常会将HTML、CSS、JavaScript等源文件压缩后上传到服务器上。压缩通常可以减少文件大小,加快加载速度。 3. **文件命名规则:** 从文件命名可以推断出命名习惯,这通常是开发人员约定俗成的,有助于维护代码的整洁和可读性。例如,“my_resume”很直观地表示了这个文件是关于“我的简历”的内容。 综上所述,这些信息点不仅提供了关于个人简历的重要性和制作要点,而且还涵盖了使用HTML制作简历的各个方面,包括页面结构设计、元素应用、响应式设计以及文件组织和管理等。针对想要制作个人简历的用户,这些知识点提供了相当丰富的信息,以帮助他们更好地创建和优化自己的在线简历。