import torch import os import torch.nn as nn import torch.optim as optim import numpy as np import random import matplotlib.pyplot as plt class Net(nn.Module): def init(self): super(Net, self).init() self.conv1 = nn.Conv2d(1, 16, kernel_size=3,stride=1) self.pool = nn.MaxPool2d(kernel_size=2,stride=2) self.conv2 = nn.Conv2d(16, 32, kernel_size=3,stride=1) self.fc1 = nn.Linear(32 * 9 * 9, 120) self.fc2 = nn.Linear(120, 84) self.fc3 = nn.Linear(84, 2) def forward(self, x): x = self.pool(nn.functional.relu(self.conv1(x))) x = self.pool(nn.functional.relu(self.conv2(x))) x = x.view(-1, 32 * 9 * 9) x = nn.functional.relu(self.fc1(x)) x = nn.functional.relu(self.fc2(x)) x = self.fc3(x) return x net = Net() criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9) folder_path1 = 'random_matrices2' # 创建空的tensor x = torch.empty((40, 1, 42, 42)) # 遍历文件夹内的文件,将每个矩阵转化为tensor并存储 for j in range(40): for j in range(40): file_name = 'matrix_{}.npy'.format(i) file_path1 = os.path.join(folder_path1, file_name) matrix1 = np.load(file_path1) x[j] = torch.from_numpy(matrix1).unsqueeze(0) folder_path2 = 'random_label2' y = torch.empty((40, )) for k in range(40): for k in range(40): file_name = 'label_{}.npy'.format(i) file_path2 = os.path.join(folder_path2, file_name) matrix2 = np.load(file_path2) y[k] = torch.from_numpy(matrix2).unsqueeze(0) losses = [] for epoch in range(10): running_loss = 0.0 for i in range(40): inputs, labels = x[i], y[i] optimizer.zero_grad() outputs = net(inputs) loss = criterion(outputs, labels.squeeze(1)) loss.backward() optimizer.step() running_loss += loss.item() losses.append(running_loss / 40) print('[%d] loss: %.3f' % (epoch + 1, running_loss / 40)) print('Finished Training') plt.plot(losses) plt.xlabel('Epoch') plt.ylabel('Loss') plt.show() 报错:IndexError: Dimension out of range (expected to be in range of [-1, 0], but got 1) 怎么修改?
时间: 2023-12-09 22:06:25 浏览: 141
resnet图像分类与可视化.zip
5星 · 资源好评率100%
在代码中,有两个地方需要进行修改:
1. 在读取标签的部分,需要将 `unsqueeze(0)` 改为 `item()`,因为标签是一个单独的数字,而不是一个张量:
```
y[k] = torch.from_numpy(matrix2).item()
```
2. 在使用标签计算损失时,需要将标签转换为长整型,因为 `CrossEntropyLoss()` 要求标签是长整型:
```
loss = criterion(outputs, labels.long())
```
修改后的完整代码如下:
```
import torch
import os
import torch.nn as nn
import torch.optim as optim
import numpy as np
import random
import matplotlib.pyplot as plt
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 16, kernel_size=3,stride=1)
self.pool = nn.MaxPool2d(kernel_size=2,stride=2)
self.conv2 = nn.Conv2d(16, 32, kernel_size=3,stride=1)
self.fc1 = nn.Linear(32 * 9 * 9, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 2)
def forward(self, x):
x = self.pool(nn.functional.relu(self.conv1(x)))
x = self.pool(nn.functional.relu(self.conv2(x)))
x = x.view(-1, 32 * 9 * 9)
x = nn.functional.relu(self.fc1(x))
x = nn.functional.relu(self.fc2(x))
x = self.fc3(x)
return x
net = Net()
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
folder_path1 = 'random_matrices2'
# 创建空的tensor
x = torch.empty((40, 1, 42, 42))
# 遍历文件夹内的文件,将每个矩阵转化为tensor并存储
for j in range(40):
file_name = 'matrix_{}.npy'.format(j)
file_path1 = os.path.join(folder_path1, file_name)
matrix1 = np.load(file_path1)
x[j] = torch.from_numpy(matrix1).unsqueeze(0)
folder_path2 = 'random_label2'
y = torch.empty((40, ))
for k in range(40):
file_name = 'label_{}.npy'.format(k)
file_path2 = os.path.join(folder_path2, file_name)
matrix2 = np.load(file_path2)
y[k] = torch.from_numpy(matrix2).item()
losses = []
for epoch in range(10):
running_loss = 0.0
for i in range(40):
inputs, labels = x[i], y[i]
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, labels.long())
loss.backward()
optimizer.step()
running_loss += loss.item()
losses.append(running_loss / 40)
print('[%d] loss: %.3f' % (epoch + 1, running_loss / 40))
print('Finished Training')
plt.plot(losses)
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.show()
```
阅读全文