hive on spark中hive的参数优化是否还会生效

时间: 2024-12-30 20:21:25 浏览: 8
Hive on Spark(也称为SparkSQL或Apache Hive with Spark support)是一种将Apache Hive SQL查询与Apache Spark的计算能力相结合的技术。当在Hive on Spark环境中进行参数优化时,通常是指针对Hive的配置参数进行调整,以便更好地利用Spark的性能优势,比如分区策略、缓存策略等。 Hive自身的参数优化主要包括: 1. `hive.exec.dynamic.partition`: 控制动态分区的行为。 2. `hive.exec.compress.output`: 是否压缩输出数据,可以节省存储空间。 3. `hive.exec.compress.mapoutput`: 对mapreduce作业的输出进行压缩。 然而,尽管这些参数是针对Hive查询的,它们的作用在Hive on Spark中可能会有所不同,因为Spark SQL有自己的优化算法和调度机制。例如,Spark SQL允许更细粒度的资源管理,并且它的批处理模式能够自动进行本地化和分区优化。 所以,在Hive on Spark中,原生的Hive参数优化仍然会影响查询性能,但可能需要结合Spark的特性进行一些调整。Spark会对查询计划进行优化,比如基于列的过滤和分区,这可能会超过单纯依赖Hive参数的效果。
相关问题

怎么配置hive on spark

配置Hive on Spark需要进行以下步骤: 1. 确保已经安装了Spark和Hive,并且它们都能正常工作。 2. 在Hive的配置文件`hive-site.xml`中添加以下配置项: ``` <property> <name>hive.execution.engine</name> <value>spark</value> </property> ``` 3. 在Spark的配置文件`spark-defaults.conf`中添加以下配置项: ``` spark.master=yarn spark.eventLog.enabled=true spark.eventLog.dir=hdfs://mycluster/spark/history spark.executor.memory=2g spark.driver.memory=2g spark.driver.extraLibraryPath=/home/local/hadoop/lib/native spark.executor.extraLibraryPath=/home/local/hadoop/lib/native ``` 4. 将Spark的jar包上传到HDFS上的一个目录,例如`/spark-jars`: ``` hdfs dfs -mkdir /spark-jars hdfs dfs -put /opt/spark/jars/* /spark-jars ``` 5. 重启Hive服务,使配置生效。 通过以上步骤,你就可以成功配置Hive on Spark了。请注意,这只是一个简单的配置示例,你可能需要根据你的具体环境和需求进行适当的调整。引用\[1\]\[2\]\[3\] #### 引用[.reference_title] - *1* [hive on spark 配置 和 spark on hive](https://blog.csdn.net/young_0609/article/details/114900238)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* [Hive 上配置 Hive on Spark](https://blog.csdn.net/zhy0414/article/details/126885386)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] - *3* [配置hive on spark](https://blog.csdn.net/weixin_56581189/article/details/129555523)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]

cdh配置hive on spark

### 回答1: CDH(Cloudera's Distribution for Hadoop)是Cloudera公司针对Hadoop生态系统进行的一系列软件包和工具的集成,其中包括Hive on Spark的配置。 Hive是一个建立在Hadoop之上的数据仓库基础架构,它提供了类似于SQL的查询语言HiveQL,方便用户使用SQL语言对存储在Hadoop中的大型数据集进行查询和分析。Spark是一个快速、通用的数据处理引擎,具有内存计算的特性,能在内存中高效地处理大规模数据。 在CDH中配置Hive on Spark需要进行以下步骤: 1. 确保CDH集群已经正确安装和配置,并且已经启动了Hive服务和Spark服务。 2. 在CDH管理界面中,选择Hive服务,然后点击“配置”选项卡。 3. 在配置页面中,找到“Hive 服务”下的“Ancillary Service Configuration”部分。在“Spark”部分中,填写正确的Spark主节点地址和端口号。 4. 点击“保存并重启”以应用配置更改。 5. 在CDH管理界面中,选择Spark服务,然后点击“配置”选项卡。 6. 在配置页面中,找到“Spark 特定”的部分。在“Spark 实例模式”中选择“Standalone”,表示将使用独立的Spark集群。 7. 在“Spark 主节点地址”中填写正确的Spark主节点的地址。 8. 点击“保存并重启”以应用配置更改。 9. 配置完成后,可以使用HiveQL语句在Hive中使用Spark进行查询和分析数据。在Hive命令行或Hue界面中,编写需要的查询语句并执行。 通过以上步骤,就可以在CDH上成功配置Hive on Spark。这样就可以同时利用Hive和Spark的强大功能,实现对大规模数据的高效分析和处理。 ### 回答2: CDH配置Hive on Spark是指在CDH平台上配置使用Spark作为Hive的计算引擎。下面是具体的步骤: 1. 首先,确保已经在CDH平台上安装了Hive和Spark组件。 2. 在Hive的配置文件中,需要添加以下参数来启用Hive on Spark: hive.execution.engine = spark hive.spark.client.connect.timeout = 300s hive.spark.client.server.connect.timeout = 300s 3. 在Spark的配置文件中,需要增加以下参数来支持Hive on Spark: spark.master = yarn-client spark.deploy.mode = client spark.submit.deployMode = client spark.yarn.queue = default spark.executor.instances = 10 spark.executor.memory = 4G spark.executor.cores = 2 spark.driver.memory = 4G 4. 然后,重启Hive和Spark的服务。 5. 运行Hive脚本或者Hive命令时,可以在Hive中使用"hive.execution.engine=spark"设置为Spark引擎,或者在命令行中使用"--engine=spark"参数。 配置完成后,Hive会将相应的作业提交给Spark来执行,利用Spark的分布式计算能力加速Hive查询的执行速度。需要注意的是,配置Hive on Spark需要确保CDH平台中的Hive和Spark是兼容的,并且调整Spark的资源配置以满足计算需求。 总之,通过CDH配置Hive on Spark可以充分发挥Spark的并行处理能力,提高Hive查询的执行效率和性能。 ### 回答3: CDH是一种大数据解决方案,用于配置Hive on Spark的步骤如下: 1. 首先,确保已安装CDH集群并启动了Hive和Spark组件。如果还没有安装,请按照CDH文档进行安装和配置。 2. 检查Hive和Spark的版本兼容性。Hive on Spark需要Hive和Spark版本之间的兼容性,查看CDH文档以了解哪些版本适用于您的集群。 3. 在Hive配置文件中启用Hive的Spark支持。打开Hive配置文件(hive-site.xml),设置hive.execution.engine为spark。 4. 配置Spark属性。在Spark配置文件(spark-defaults.conf)中,设置spark.master为yarn-client或yarn-cluster,这取决于您的CDH集群配置。还可以通过设置其他属性来优化Spark执行引擎的性能。 5. 启动Hive服务。重启Hive服务以使配置更改生效。您可以使用以下命令重新启动Hive服务: sudo service hive-server2 restart 6. 测试Hive on Spark。使用Hive命令行或其他Hive客户端,运行一些Hive查询并确认它们是否在Spark上执行。 配置Hive on Spark可以提供更好的性能和资源利用率。而且,使用Spark作为执行引擎还可以充分利用Spark提供的丰富的数据处理功能和API。通过使用CDH的Hive on Spark配置,您可以更好地处理和分析大规模的数据集。
阅读全文

相关推荐

最新推荐

recommend-type

C2000,28335Matlab Simulink代码生成技术,处理器在环,里面有电力电子常用的GPIO,PWM,ADC,DMA,定时器中断等各种电力电子工程师常用的模块儿,只需要有想法剩下的全部自

C2000,28335Matlab Simulink代码生成技术,处理器在环,里面有电力电子常用的GPIO,PWM,ADC,DMA,定时器中断等各种电力电子工程师常用的模块儿,只需要有想法剩下的全部自动代码生成, 电源建模仿真与控制原理 (1)数字电源的功率模块建模 (2)数字电源的环路补偿器建模 (3)数字电源的仿真和分析 (4)如何把数学控制方程变成硬件C代码; (重点你的想法如何实现)这是重点数字电源硬件资源、软件设计、上机实验调试 (1) DSP硬件资源; (2)DSP的CMD文件与数据的Q格式: (3) DSP的C程序设计; (4)数字电源的软件设计流程 (5)数字电源上机实验和调试(代码采用全中文注释)还有这个,下面来看看都有啥,有视频和对应资料(S代码,对应课件详细讲述传递函数推倒过程。
recommend-type

OpenArk64-1.3.8beta版-20250104

OpenArk64-1.3.8beta版-20250104,beta版解决Windows 11 23H2及以上进入内核模式,查看系统热键一片空白的情况
recommend-type

面向对象(下)代码.doc

java面向对象程序设计实验报告
recommend-type

基于springboot的校园台球厅人员与设备管理系统--论文.zip

基于springboot的校园台球厅人员与设备管理系统--论文.zip
recommend-type

【创新无忧】基于matlab蜣螂算法DBO优化极限学习机KELM故障诊断【含Matlab源码 10720期】.zip

【创新无忧】基于matlab蜣螂算法DBO优化极限学习机KELM故障诊断【含Matlab源码 10720期】.zip
recommend-type

降低成本的oracle11g内网安装依赖-pdksh-5.2.14-1.i386.rpm下载

资源摘要信息: "Oracle数据库系统作为广泛使用的商业数据库管理系统,其安装过程较为复杂,涉及到多个预安装依赖包的配置。本资源提供了Oracle 11g数据库内网安装所必需的预安装依赖包——pdksh-5.2.14-1.i386.rpm,这是一种基于UNIX系统使用的命令行解释器,即Public Domain Korn Shell。对于Oracle数据库的安装,pdksh是必须的预安装组件,其作用是为Oracle安装脚本提供命令解释的环境。" Oracle数据库的安装与配置是一个复杂的过程,需要诸多组件的协同工作。在Linux环境下,尤其在内网环境中安装Oracle数据库时,可能会因为缺少某些关键的依赖包而导致安装失败。pdksh是一个自由软件版本的Korn Shell,它基于Bourne Shell,同时引入了C Shell的一些特性。由于Oracle数据库对于Shell脚本的兼容性和可靠性有较高要求,因此pdksh便成为了Oracle安装过程中不可或缺的一部分。 在进行Oracle 11g的安装时,如果没有安装pdksh,安装程序可能会报错或者无法继续。因此,确保pdksh已经被正确安装在系统上是安装Oracle的第一步。根据描述,这个特定的pdksh版本——5.2.14,是一个32位(i386架构)的rpm包,适用于基于Red Hat的Linux发行版,如CentOS、RHEL等。 运维人员在进行Oracle数据库安装时,通常需要下载并安装多个依赖包。在描述中提到,下载此依赖包的价格已被“打下来”,暗示了市场上其他来源可能提供的费用较高,这可能是因为Oracle数据库的软件和依赖包通常价格不菲。为了降低IT成本,本文档提供了实际可行的、经过测试确认可用的资源下载途径。 需要注意的是,仅仅拥有pdksh-5.2.14-1.i386.rpm文件是不够的,还要确保系统中已经安装了正确的依赖包管理工具,并且系统的软件仓库配置正确,以便于安装rpm包。在安装rpm包时,通常需要管理员权限,因此可能需要使用sudo或以root用户身份来执行安装命令。 除了pdksh之外,Oracle 11g安装可能还需要其他依赖,如系统库文件、开发工具等。如果有其他依赖需求,可以参考描述中提供的信息,点击相关者的头像,访问其提供的其他资源列表,以找到所需的相关依赖包。 总结来说,pdksh-5.2.14-1.i386.rpm包是Oracle 11g数据库内网安装过程中的关键依赖之一,它的存在对于运行Oracle安装脚本是必不可少的。当运维人员面对Oracle数据库安装时,应当检查并确保所有必需的依赖组件都已准备就绪,而本文档提供的资源将有助于降低安装成本,并确保安装过程的顺利进行。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

云计算术语全面掌握:从1+X样卷A卷中提炼精华

![云计算术语全面掌握:从1+X样卷A卷中提炼精华](https://ask.qcloudimg.com/http-save/yehe-1475574/696453895d391e6b0f0e27455ef79c8b.jpeg) # 摘要 本文全面解析了云计算的基础概念,并深入理解了云计算服务模型,包括IaaS、PaaS和SaaS的区别及其应用。文章详细探讨了云计算部署模型,包括公有云、私有云及混合云的架构优势和选择策略。同时,本文也实践应用了云计算的关键技术,如虚拟化、容器技术以及云安全策略。此外,文章探讨了云服务管理与监控的工具、最佳实践、性能监控以及合规性和可持续发展问题。最后,本文通
recommend-type

. 索读取⼀幅图像,让该图像拼接⾃身图像,分别⽤⽔ 平和垂直 2 种。要求运⾏结果弹窗以⾃⼰的名字全拼命名。

在Python中,我们可以使用PIL(Pillow)库来处理图像并实现您所描述的功能。首先,你需要安装PIL库,如果还没有安装,可以使用pip install pillow命令。以下是简单的步骤来实现这个功能: 1. 打开图像文件: ```python from PIL import Image def open_image_and_display(image_path): img = Image.open(image_path) ``` 2. 创建一个新的空白图像,用于存放拼接后的图像: ```python def create_concat_image(img, directi
recommend-type

Java基础实验教程Lab1解析

资源摘要信息:"Java Lab1实践教程" 本次提供的资源是一个名为"Lab1"的Java实验室项目,旨在帮助学习者通过实践来加深对Java编程语言的理解。从给定的文件信息来看,该项目的名称为"Lab1",它的描述同样是"Lab1",这表明这是一个基础的实验室练习,可能是用于介绍Java语言或设置一个用于后续实践的开发环境。文件列表中的"Lab1-master"表明这是一个主版本的压缩包,包含了多个文件和可能的子目录结构,用于确保完整性和便于版本控制。 ### Java知识点详细说明 #### 1. Java语言概述 Java是一种高级的、面向对象的编程语言,被广泛用于企业级应用开发。Java具有跨平台的特性,即“一次编写,到处运行”,这意味着Java程序可以在支持Java虚拟机(JVM)的任何操作系统上执行。 #### 2. Java开发环境搭建 对于一个Java实验室项目,首先需要了解如何搭建Java开发环境。通常包括以下步骤: - 安装Java开发工具包(JDK)。 - 配置环境变量(JAVA_HOME, PATH)以确保可以在命令行中使用javac和java命令。 - 使用集成开发环境(IDE),如IntelliJ IDEA, Eclipse或NetBeans,这些工具可以简化编码、调试和项目管理过程。 #### 3. Java基础语法 在Lab1中,学习者可能需要掌握一些Java的基础语法,例如: - 数据类型(基本类型和引用类型)。 - 变量的声明和初始化。 - 控制流语句,包括if-else, for, while和switch-case。 - 方法的定义和调用。 - 数组的使用。 #### 4. 面向对象编程概念 Java是一种面向对象的编程语言,Lab1项目可能会涉及到面向对象编程的基础概念,包括: - 类(Class)和对象(Object)的定义。 - 封装、继承和多态性的实现。 - 构造方法(Constructor)的作用和使用。 - 访问修饰符(如private, public)的使用,以及它们对类成员访问控制的影响。 #### 5. Java标准库使用 Java拥有一个庞大的标准库,Lab1可能会教授学习者如何使用其中的一些基础类和接口,例如: - 常用的java.lang包下的类,如String, Math等。 - 集合框架(Collections Framework),例如List, Set, Map等接口和实现类。 - 异常处理机制,包括try-catch块和异常类层次结构。 #### 6. 实验室项目实践 实践是学习编程最有效的方式之一。Lab1项目可能包含以下类型的实际练习: - 创建一个简单的Java程序,比如一个控制台计算器。 - 实现基本的数据结构和算法,如链表、排序和搜索。 - 解决特定的问题,比如输入处理和输出格式化。 #### 7. 项目组织和版本控制 "Lab1-master"文件名暗示该项目可能采用Git作为版本控制系统。在项目实践中,学习者可能需要了解: - 如何使用Git命令进行版本控制。 - 分支(Branch)的概念和合并(Merge)的策略。 - 创建和管理Pull Request来协作和审查代码。 #### 8. 代码规范和文档 良好的代码规范和文档对于保持代码的可读性和可维护性至关重要。Lab1项目可能会强调: - 遵循Java编码标准,例如命名约定、注释习惯。 - 编写文档注释(Javadoc),以便自动生成API文档。 通过Lab1项目的实践和指导,学习者能够逐步掌握Java编程语言的核心知识,并为后续更深入的学习和项目开发打下坚实的基础。