RTT (mma_rule) * RT (mma_rules_table_get_rule) (RTT (mma_rules_table) * srt, u32 srt_index) { if (!pool_is_free_index (srt->rules, srt_index)) return (srt->rules + srt_index); return 0; }

时间: 2023-12-05 14:04:49 浏览: 83
这段代码看起来是一个函数 `RT(mma_rules_table_get_rule)` 的实现,用于从 `mma_rules_table` 结构中获取指定索引的规则。 函数的参数包括一个指向 `mma_rules_table` 结构的指针 `srt`,以及一个 `u32` 类型的整数 `srt_index`,表示要获取的规则的索引。 函数内部首先通过调用 `pool_is_free_index` 函数判断给定索引 `srt_index` 是否在 `srt->rules` 中被使用。如果索引没有被使用,则返回 0,表示找不到对应的规则。 如果索引被使用,那么返回 `srt->rules + srt_index`,表示返回对应索引处规则的指针。 总体来说,这段代码是一个用于从给定的 `mma_rules_table` 结构中获取规则的函数。它通过判断索引是否被使用来确定是否能够获取到规则,并返回相应的指针。
相关问题

u32 RT (mma_rules_table_lookup_rule) (RTT (mma_rules_table) * srt, RTT (mma_mask_or_match) * key, u32 rule_index) { RTT (mma_rule) * rp; u32 rv; int i; ASSERT (rule_index != MMA_TABLE_INVALID_INDEX); rp = RT (mma_rules_table_get_rule) (srt, rule_index); ASSERT (rp); if (!RT (rule_is_match_for_key) (key, rp)) return MMA_TABLE_INVALID_INDEX; for (i = 0; i < vec_len (rp->next_indices); i++) { rv = RT (mma_rules_table_lookup_rule) (srt, key, rp->next_indices[i]); if (rv != MMA_TABLE_INVALID_INDEX) return (rv); } return rule_index; }

这段代码看起来是一个函数 `RT(mma_rules_table_lookup_rule)` 的实现,具体功能是在 `mma_rules_table` 中查找匹配规则。 代码中的数据类型 `u32` 是一个无符号整数类型,在32位系统中占用4个字节。`RTT(mma_rules_table)`、`RTT(mma_mask_or_match)` 和 `RTT(mma_rule)` 看起来是宏定义,表示不同的数据类型。 函数的参数包括一个指向 `mma_rules_table` 结构的指针 `srt`,一个指向 `mma_mask_or_match` 结构的指针 `key`,以及一个 `u32` 类型的整数 `rule_index`。 函数内部首先对 `rule_index` 进行断言判断,确保其不等于 `MMA_TABLE_INVALID_INDEX`。然后通过 `mma_rules_table_get_rule` 函数获取指定索引的规则,并进行断言判断规则是否存在。 接下来,通过调用 `rule_is_match_for_key` 函数判断规则是否与给定的 `key` 匹配,如果不匹配则返回 `MMA_TABLE_INVALID_INDEX`。 然后,通过一个循环遍历规则的 `next_indices` 字段,递归调用 `mma_rules_table_lookup_rule` 函数查找下一个规则。如果找到匹配的规则,则返回该规则的索引。 最后,如果没有找到匹配的规则,则返回最初传入的 `rule_index`。 总体来说,这段代码是一个递归的规则查找函数,用于在 `mma_rules_table` 中查找匹配给定 `key` 的规则。

解释struct rtable { struct dst_entry dst; int rt_flags; unsigned int rt_priority; u32 rt_iif; struct net_device *rt_dev; struct rtable *u; struct flowi fl; struct rt6_info *rt6i; struct fib_info *fib_info; int arp_status; unsigned long rt_genid; void *peer; struct neigh_parms *parms; struct hh_cache *hh; int rt_metric; unsigned long rt_mtu; u32 rt_window; u32 rt_ssthresh; u32 rt_tos; u32 rt_mark; u32 rt_via_tos; u32 rt_irtt; u32 rt_pmtu; u32 rt_hoplimit; u32 rt_rxhash; struct timer_list rt_timer; struct timer_list rt_advise_timer; unsigned long rt_rmx[RTAX_MAX]; unsigned long rt_cpu; struct rcu_head rcu; };

`struct rtable`是Linux内核中用于表示路由表项的结构体,它包含了以下字段: - `struct dst_entry dst`:表示路由目标的抽象结构,包含了一些通用的目标路由信息; - `int rt_flags`:表示路由表项的一些标志位,例如是否是主机路由表项、是否启用了源地址验证等; - `unsigned int rt_priority`:表示路由表项的优先级,用于决定路由选择时的权重; - `u32 rt_iif`:表示数据包进入的接口,用于数据包的转发和路由选择; - `struct net_device *rt_dev`:表示数据包要从哪个网络设备出去; - `struct rtable *u`:表示指向上一级路由的指针,通常用于实现路由缓存; - `struct flowi fl`:表示流信息,包含了要进行路由选择所需要的源、目的地址、服务类型等信息; - `struct rt6_info *rt6i`:表示IPv6路由表项的信息; - `struct fib_info *fib_info`:表示当前路由表的信息,包括了路由表的ID等; - `int arp_status`:表示路由表项的ARP状态; - `unsigned long rt_genid`:表示路由表项的生成ID; - `void *peer`:表示路由表项对应的邻居设备; - `struct neigh_parms *parms`:表示路由表项对应的邻居设备的参数; - `struct hh_cache *hh`:表示硬件地址缓存,用于提高路由性能; - `int rt_metric`:表示路由表项的度量值,用于决定路由选择时的优先级; - `unsigned long rt_mtu`:表示路由表项对应的最大传输单元; - `u32 rt_window`:表示路由表项对应的窗口大小,通常用于TCP拥塞控制; - `u32 rt_ssthresh`:表示路由表项对应的慢启动阈值,通常用于TCP拥塞控制; - `u32 rt_tos`:表示路由表项对应的服务类型; - `u32 rt_mark`:表示路由表项对应的标记; - `u32 rt_via_tos`:表示路由表项对应的网关服务类型; - `u32 rt_irtt`:表示路由表项对应的初始往返时间(Initial Round-Trip Time); - `u32 rt_pmtu`:表示路由表项对应的路径最大传输单元(Path MTU); - `u32 rt_hoplimit`:表示路由表项对应的跳数限制,通常用于IPv6; - `u32 rt_rxhash`:表示路由表项对应的数据包接收哈希值; - `struct timer_list rt_timer`:表示路由表项的计时器,用于实现路由缓存; - `struct timer_list rt_advise_timer`:表示路由表项的建议计时器; - `unsigned long rt_rmx[RTAX_MAX]`:表示路由表项的一些额外信息,例如RTT(Round-Trip Time)等; - `unsigned long rt_cpu`:表示路由表项所在的CPU编号; - `struct rcu_head rcu`:表示RCU(Read-Copy Update)头,用于实现无锁读写操作。
阅读全文

相关推荐

最新推荐

recommend-type

STM32 RTT学习笔记(三)SPI FLASH

本文是关于STM32 RT-Thread操作系统中添加SPI Flash设备的学习笔记,主要涉及STM32F407vet6芯片和RT-Thread组件的SPI驱动及SFUD库的使用。首先,我们要了解SPI Flash的两种型号:W25X40CL和W25Q64。它们分别具有不同...
recommend-type

Fast TCP设计原理

Fast TCP的设计中,它维护一个固定容量的packet队列,队列长度根据采样的RTT(往返时间)与基准RTT来估计。当入队的packet数量少时,它可以增加发送速率,反之则减少速率。这种方法可以更平滑地调整速率,避免基于丢...
recommend-type

微信Java开发工具包,支持包括微信支付、开放平台、公众号、企业微信、视频号、小程序等微信功能模块的后端开发

微信Java开发工具包,支持包括微信支付、开放平台、公众号、企业微信、视频号、小程序等微信功能模块的后端开发。
recommend-type

如何制作MC(需要下载海龟编辑器2.0,下载pyglet==1.5.15)

如何制作MC(需要下载海龟编辑器2.0,下载pyglet==1.5.15)
recommend-type

Java集合ArrayList实现字符串管理及效果展示

资源摘要信息:"Java集合框架中的ArrayList是一个可以动态增长和减少的数组实现。它继承了AbstractList类,并且实现了List接口。ArrayList内部使用数组来存储添加到集合中的元素,且允许其中存储重复的元素,也可以包含null元素。由于ArrayList实现了List接口,它支持一系列的列表操作,包括添加、删除、获取和设置特定位置的元素,以及迭代器遍历等。 当使用ArrayList存储元素时,它的容量会自动增加以适应需要,因此无需在创建ArrayList实例时指定其大小。当ArrayList中的元素数量超过当前容量时,其内部数组会重新分配更大的空间以容纳更多的元素。这个过程是自动完成的,但它可能导致在列表变大时会有性能上的损失,因为需要创建一个新的更大的数组,并将所有旧元素复制到新数组中。 在Java代码中,使用ArrayList通常需要导入java.util.ArrayList包。例如: ```java import java.util.ArrayList; public class Main { public static void main(String[] args) { ArrayList<String> list = new ArrayList<String>(); list.add("Hello"); list.add("World"); // 运行效果图将显示包含"Hello"和"World"的列表 } } ``` 上述代码创建了一个名为list的ArrayList实例,并向其中添加了两个字符串元素。在运行效果图中,可以直观地看到这个列表的内容。ArrayList提供了多种方法来操作集合中的元素,比如get(int index)用于获取指定位置的元素,set(int index, E element)用于更新指定位置的元素,remove(int index)或remove(Object o)用于删除元素,size()用于获取集合中元素的个数等。 为了演示如何使用ArrayList进行字符串的存储和管理,以下是更加详细的代码示例,以及一个简单的运行效果图展示: ```java import java.util.ArrayList; import java.util.Iterator; public class Main { public static void main(String[] args) { // 创建一个存储字符串的ArrayList ArrayList<String> list = new ArrayList<String>(); // 向ArrayList中添加字符串元素 list.add("Apple"); list.add("Banana"); list.add("Cherry"); list.add("Date"); // 使用增强for循环遍历ArrayList System.out.println("遍历ArrayList:"); for (String fruit : list) { System.out.println(fruit); } // 使用迭代器进行遍历 System.out.println("使用迭代器遍历:"); Iterator<String> iterator = list.iterator(); while (iterator.hasNext()) { String fruit = iterator.next(); System.out.println(fruit); } // 更新***List中的元素 list.set(1, "Blueberry"); // 移除ArrayList中的元素 list.remove(2); // 再次遍历ArrayList以展示更改效果 System.out.println("修改后的ArrayList:"); for (String fruit : list) { System.out.println(fruit); } // 获取ArrayList的大小 System.out.println("ArrayList的大小为: " + list.size()); } } ``` 在运行上述代码后,控制台会输出以下效果图: ``` 遍历ArrayList: Apple Banana Cherry Date 使用迭代器遍历: Apple Banana Cherry Date 修改后的ArrayList: Apple Blueberry Date ArrayList的大小为: 3 ``` 此代码段首先创建并初始化了一个包含几个水果名称的ArrayList,然后展示了如何遍历这个列表,更新和移除元素,最终再次遍历列表以展示所做的更改,并输出列表的当前大小。在这个过程中,可以看到ArrayList是如何灵活地管理字符串集合的。 此外,ArrayList的实现是基于数组的,因此它允许快速的随机访问,但对元素的插入和删除操作通常需要移动后续元素以保持数组的连续性,所以这些操作的性能开销会相对较大。如果频繁进行插入或删除操作,可以考虑使用LinkedList,它基于链表实现,更适合于这类操作。 在开发中使用ArrayList时,应当注意避免过度使用,特别是当知道集合中的元素数量将非常大时,因为这样可能会导致较高的内存消耗。针对特定的业务场景,选择合适的集合类是非常重要的,以确保程序性能和资源的最优化利用。"
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【MATLAB信号处理优化】:算法实现与问题解决的实战指南

![【MATLAB信号处理优化】:算法实现与问题解决的实战指南](https://i0.hdslb.com/bfs/archive/e393ed87b10f9ae78435997437e40b0bf0326e7a.png@960w_540h_1c.webp) # 1. MATLAB信号处理基础 MATLAB,作为工程计算和算法开发中广泛使用的高级数学软件,为信号处理提供了强大的工具箱。本章将介绍MATLAB信号处理的基础知识,包括信号的类型、特性以及MATLAB处理信号的基本方法和步骤。 ## 1.1 信号的种类与特性 信号是信息的物理表示,可以是时间、空间或者其它形式的函数。信号可以被分
recommend-type

在西门子S120驱动系统中,更换SMI20编码器时应如何确保数据的正确备份和配置?

在西门子S120驱动系统中更换SMI20编码器是一个需要谨慎操作的过程,以确保数据的正确备份和配置。这里是一些详细步骤: 参考资源链接:[西门子Drive_CLIQ编码器SMI20数据在线读写步骤](https://wenku.csdn.net/doc/39x7cis876?spm=1055.2569.3001.10343) 1. 在进行任何操作之前,首先确保已经备份了当前工作的SMI20编码器的数据。这通常需要使用STARTER软件,并连接CU320控制器和电脑。 2. 从拓扑结构中移除旧编码器,下载当前拓扑结构,然后删除旧的SMI
recommend-type

实现2D3D相机拾取射线的关键技术

资源摘要信息: "camera-picking-ray:为2D/3D相机创建拾取射线" 本文介绍了一个名为"camera-picking-ray"的工具,该工具用于在2D和3D环境中,通过相机视角进行鼠标交互时创建拾取射线。拾取射线是指从相机(或视点)出发,通过鼠标点击位置指向场景中某一点的虚拟光线。这种技术广泛应用于游戏开发中,允许用户通过鼠标操作来选择、激活或互动场景中的对象。为了实现拾取射线,需要相机的投影矩阵(projection matrix)和视图矩阵(view matrix),这两个矩阵结合后可以逆变换得到拾取射线的起点和方向。 ### 知识点详解 1. **拾取射线(Picking Ray)**: - 拾取射线是3D图形学中的一个概念,它是从相机出发穿过视口(viewport)上某个特定点(通常是鼠标点击位置)的射线。 - 在游戏和虚拟现实应用中,拾取射线用于检测用户选择的对象、触发事件、进行命中测试(hit testing)等。 2. **投影矩阵(Projection Matrix)与视图矩阵(View Matrix)**: - 投影矩阵负责将3D场景中的点映射到2D视口上,通常包括透视投影(perspective projection)和平面投影(orthographic projection)。 - 视图矩阵定义了相机在场景中的位置和方向,它将物体从世界坐标系变换到相机坐标系。 - 将投影矩阵和视图矩阵结合起来得到的invProjView矩阵用于从视口坐标转换到相机空间坐标。 3. **实现拾取射线的过程**: - 首先需要计算相机的invProjView矩阵,这是投影矩阵和视图矩阵的逆矩阵。 - 使用鼠标点击位置的视口坐标作为输入,通过invProjView矩阵逆变换,计算出射线在世界坐标系中的起点(origin)和方向(direction)。 - 射线的起点一般为相机位置或相机前方某个位置,方向则是从相机位置指向鼠标点击位置的方向向量。 - 通过编程语言(如JavaScript)的矩阵库(例如gl-mat4)来执行这些矩阵运算。 4. **命中测试(Hit Testing)**: - 使用拾取射线进行命中测试是一种检测射线与场景中物体相交的技术。 - 在3D游戏开发中,通过计算射线与物体表面的交点来确定用户是否选中了一个物体。 - 此过程中可能需要考虑射线与不同物体类型的交互,例如球体、平面、多边形网格等。 5. **JavaScript与矩阵操作库**: - JavaScript是一种广泛用于网页开发的编程语言,在WebGL项目中用于处理图形渲染逻辑。 - gl-mat4是一个矩阵操作库,它提供了创建和操作4x4矩阵的函数,这些矩阵用于WebGL场景中的各种变换。 - 通过gl-mat4库,开发者可以更容易地执行矩阵运算,而无需手动编写复杂的数学公式。 6. **模块化编程**: - camera-picking-ray看起来是一个独立的模块或库,它封装了拾取射线生成的算法,让开发者能够通过简单的函数调用来实现复杂的3D拾取逻辑。 - 模块化编程允许开发者将拾取射线功能集成到更大的项目中,同时保持代码的清晰和可维护性。 7. **文件名称列表**: - 提供的文件名称列表是"camera-picking-ray-master",表明这是一个包含多个文件和子目录的模块或项目,通常在GitHub等源代码托管平台上使用master分支来标识主分支。 - 开发者可以通过检查此项目源代码来更深入地理解拾取射线的实现细节,并根据需要进行修改或扩展功能。 ### 结论 "camera-picking-ray"作为一个技术工具,为开发者提供了一种高效生成和使用拾取射线的方法。它通过组合和逆变换相机矩阵,允许对3D场景中的物体进行精准选择和交互。此技术在游戏开发、虚拟现实、计算机辅助设计(CAD)等领域具有重要应用价值。通过了解和应用拾取射线,开发者可以显著提升用户的交互体验和操作精度。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依