请用python写一个用遗传算法解决TSP问题的代码
时间: 2024-10-02 20:02:46 浏览: 45
遗传算法解决TSP问题的Python代码示例通常包含以下几个部分:编码、初始化、适应度函数、选择、交叉和变异等。由于篇幅有限,这里提供一个简化版的框架代码:
```python
import random
import numpy as np
# 基本假设:有n个城市,每个城市有坐标(x, y)
def tsp_tour(cities):
# 这里仅用随机排列作为基础解
def generate_random_tour():
return list(range(len(cities))) # 创建一个随机游览序列
def tour_distance(tour):
distance = 0
for i in range(len(tour)):
distance += calculate_distance(cities[tour[i]], cities[tour[(i + 1) % len(tour)]])
return distance
def calculate_distance(city1, city2):
x1, y1 = cities[city1]
x2, y2 = cities[city2]
return np.sqrt((x2 - x1)**2 + (y2 - y1)**2)
def selection(population, fitness):
return random.choices(population, weights=fitness / sum(fitness), k=len(population))
def crossover(parents):
child1, child2 = [], []
point = random.randint(0, len(parents[0]) - 1)
child1.extend(parents[0][:point] + parents[1][point:])
child2.extend(parents[1][:point] + parents[0][point:])
return child1, child2
def mutate(child):
if random.random() < mutation_rate:
swap_index = random.randint(0, len(child) - 1)
child[swap_index], child[(swap_index + 1) % len(child)] = child[(swap_index + 1) % len(child)], child[swap_index]
return child
# 初始化一个固定大小的种群
population_size = 100
population = [generate_random_tour() for _ in range(population_size)]
# 假设一个简单的适应度函数是路径长度
fitness = [tour_distance(p) for p in population]
for generation in range(max_generations):
new_population = []
while len(new_population) < population_size:
parents = selection(population, fitness)
offspring = crossover(parents)
offspring[0] = mutate(offspring[0])
offspring[1] = mutate(offspring[1])
new_population.append(min(offspring, key=tour_distance))
# 更新种群
population = new_population
best_tour = min(population, key=tour_distance)
print(f"Generation {generation+1}: Best Tour Length = {tour_distance(best_tour)}")
return best_tour
# 假设cities是一个包含城市坐标列表
cities = ... # 根据实际需求填充城市坐标数据
mutation_rate = 0.01
max_generations = 1000
best_tour = tsp_tour(cities)
```
注意这只是一个简化的示例,实际应用中可能需要更复杂的编码、选择、交叉和变异策略,以及自适应终止条件等。此外,这个代码也不能保证找到最优解,因为遗传算法往往只能找到近似最优解。
阅读全文