R语言报错Error in if (tmp[2] < AIC) { : missing value where TRUE/FALSE needed
时间: 2024-09-12 20:02:37 浏览: 165
这个错误信息通常出现在R语言中条件语句(如if语句)中,当你试图对缺失值(`NA`或`NULL`)进行比较时。在你给出的引用[1]代码片段中,`error`函数调用是在`x < 0` 或 `x > 1` 的判断下发生的,如果`x`是`NA`,那么条件就会引发错误,因为`NA`不满足 `<` 或 `>` 这样的关系运算。
同样,在引用[2]的代码片段中,`<` 符号用于比较`eta - offset`与`AIC`,如果`eta - offset`在`good`索引处是`NA`,而`AIC`不是,也会导致`missing value where TRUE/FALSE needed`的错误。
解决这个问题的方法通常是先检查输入变量是否有缺失值,可以使用`is.na()`函数来完成。例如,如果你要避免在`fit`计算之前遇到这类问题,可以在`if (tmp[2] < AIC)`之前加入检查:
```r
if (!is.na(tmp[2])) {
if (tmp[2] < AIC) {
# 执行后续代码
}
}
```
这会确保只有非缺失的`tmp[2]`值才会进入条件判断。
相关问题
Error in itestm[1, 1] <- itest$AIC : replacement has length zero这段报错怎么改
这个错误通常是因为你尝试将一个空值分配给一个矩阵或数据框中的元素。你需要检查你的代码,找出导致这个错误的原因。
一种可能的原因是你使用了一个空的向量或数据框来替换一个矩阵或数据框中的元素。你可以通过以下方法来解决这个问题:
1. 检查你的代码,找出导致这个错误的原因,然后修复它。
2. 将你尝试分配的值更改为非空值。
3. 确保你的数据类型匹配。例如,如果你尝试将字符向量分配给数值矩阵中的元素,就会出现这个错误。
import itertools import warnings import pandas as pd import numpy as np import statsmodels.api as sm from datetime import datetime from statsmodels.tsa.arima.model import ARIMA from statsmodels.graphics.tsaplots import plot_acf, plot_pacf from statsmodels.stats.diagnostic import acorr_ljungbox from sklearn.model_selection import train_test_split data = pd.read_csv('data.csv', parse_dates=['x'], index_col='x') train_data1, test_data = train_test_split(data1, test_size=0.3, shuffle=False) data['lag1'] = data['y'].shift(1) data['lag2'] = data['y'].shift(2) data['lag3'] = data['y'].shift(3) data['lag4'] = data['y'].shift(4) data['lag5'] = data['y'].shift(5) data['lag6'] = data['y'].shift(6) data['lag7'] = data['y'].shift(7) data.dropna(inplace=True) train_data, test_data1 = train_test_split(data, test_size=0.3, shuffle=False) g=int(input("输入P的峰值: ")) h=int(input("输入D的峰值: ")) i=int(input("输入Q的峰值: ")) p = range(0, g) d = range(0, h) q = range(0, i) pdq = list(itertools.product(p, d, q)) best_pdq = None best_aic = np.inf for param in pdq: model = sm.tsa.ARIMA(data['y'], exog=data[['lag1', 'lag2', 'lag3', 'lag4', 'lag5', 'lag6', 'lag7']], order=param) results = model.fit() aic = results.aic if aic < best_aic: best_pdq = param best_aic = aic a=best_pdq[0] b=best_pdq[1] c=best_pdq[2] model = ARIMA(data['y'], exog=data[['lag1', 'lag2', 'lag3', 'lag4', 'lag5', 'lag6', 'lag7']], order=(a,b,c)) results = model.fit() max_lag = model.k_ar model_fit = model.fit() resid = model_fit.resid lb_test = acorr_ljungbox(resid) p_value=round(lb_test['lb_pvalue'][max_lag],4) if p_value>0.05: forecast = results.forecast(steps=1, exog=data[['lag1', 'lag2', 'lag3', 'lag4', 'lag5', 'lag6', 'lag7']].iloc[-1:]) forecast.index[0].strftime('%Y-%m') print("下个月的预测结果是",round(forecast[0])) def comput_acc(real,predict,level): num_error=0 for i in range(len(real)): if abs(real[i]-predict[i])/real[i]>level: num_error+=1 return 1-num_error/len(real) print("置信水平:{},预测准确率:{}".format(0.2,comput_acc(test_x,y_pred,0.2))) else: print('输入的数据不适合使用arima模型进行预测分析,请尝试其他模型')如何修改代码使其正常运行
在你的代码中,有一些变量名没有定义,例如`data1`和`test_x`,所以我假设这些是之前定义过的变量并且进行了更改。此外,需要加入一些库的引用,如`itertools`和`sklearn`。以下是修改后的代码:
```
import itertools
import warnings
import pandas as pd
import numpy as np
import statsmodels.api as sm
from datetime import datetime
from statsmodels.tsa.arima.model import ARIMA
from statsmodels.graphics.tsaplots import plot_acf, plot_pacf
from statsmodels.stats.diagnostic import acorr_ljungbox
from sklearn.model_selection import train_test_split
data = pd.read_csv('data.csv', parse_dates=['x'], index_col='x')
train_data1, test_data = train_test_split(data, test_size=0.3, shuffle=False)
data['lag1'] = data['y'].shift(1)
data['lag2'] = data['y'].shift(2)
data['lag3'] = data['y'].shift(3)
data['lag4'] = data['y'].shift(4)
data['lag5'] = data['y'].shift(5)
data['lag6'] = data['y'].shift(6)
data['lag7'] = data['y'].shift(7)
data.dropna(inplace=True)
train_data, test_data1 = train_test_split(data, test_size=0.3, shuffle=False)
g=int(input("输入P的峰值: "))
h=int(input("输入D的峰值: "))
i=int(input("输入Q的峰值: "))
p = range(0, g)
d = range(0, h)
q = range(0, i)
pdq = list(itertools.product(p, d, q))
best_pdq = None
best_aic = np.inf
for param in pdq:
model = sm.tsa.ARIMA(data['y'], exog=data[['lag1', 'lag2', 'lag3', 'lag4', 'lag5', 'lag6', 'lag7']], order=param)
results = model.fit()
aic = results.aic
if aic < best_aic:
best_pdq = param
best_aic = aic
a=best_pdq[0]
b=best_pdq[1]
c=best_pdq[2]
model = ARIMA(data['y'], exog=data[['lag1', 'lag2', 'lag3', 'lag4', 'lag5', 'lag6', 'lag7']], order=(a,b,c))
results = model.fit()
max_lag = model.k_ar
model_fit = model.fit()
resid = model_fit.resid
lb_test = acorr_ljungbox(resid)
p_value=round(lb_test[1][max_lag],4)
if p_value>0.05:
forecast = results.forecast(steps=1, exog=data[['lag1', 'lag2', 'lag3', 'lag4', 'lag5', 'lag6', 'lag7']].iloc[-1:])
forecast.index[0].strftime('%Y-%m')
print("下个月的预测结果是",round(forecast[0]))
def comput_acc(real,predict,level):
num_error=0
for i in range(len(real)):
if abs(real[i]-predict[i])/real[i]>level:
num_error+=1
return 1-num_error/len(real)
y_pred = results.predict(start=test_data1.index[0], end=test_data1.index[-1], exog=test_data1[['lag1', 'lag2', 'lag3', 'lag4', 'lag5', 'lag6', 'lag7']])
print("置信水平:{},预测准确率:{}".format(0.2,comput_acc(test_data1['y'],y_pred,0.2)))
else:
print('输入的数据不适合使用arima模型进行预测分析,请尝试其他模型')
```
需要注意的是,由于ARIMA模型需要对历史数据进行训练,因此在使用`predict`方法来进行预测时,需要指定预测的时间范围,这里已经加入了相应的代码。同时,在计算预测准确率时,需要使用测试集的真实值和预测值,因此需要将测试集的真实值作为参数传入`comput_acc`函数中。
阅读全文