Java NIO中Channel通道的基本概念和使用方法

发布时间: 2024-01-11 16:03:01 阅读量: 35 订阅数: 33
TXT

java NIO原理和使用

star5星 · 资源好评率100%
# 1. Java NIO概述 Java NIO(New IO)是Java 1.4版本引入的新的IO API,它提供了一种新的方式来进行高效的IO操作。与传统的Java IO(也称为BIO)相比,Java NIO提供了更为灵活和高性能的IO操作方式。 ### 1.1 传统IO与NIO的区别 在传统的Java IO中,IO操作是阻塞的,意味着当一个线程在执行IO操作时,它会一直等待直到操作完成才会继续执行其他任务。这种阻塞IO模型在高并发环境下效率较低。 Java NIO通过引入了Channel和Buffer的概念来改进IO模型。Channel是一个双向的数据传输通道,可以同时用于读和写操作。Buffer是一个对象,它存储了一定数量的数据,可以通过Channel进行读写。 ### 1.2 NIO中的关键概念和组成部分 在Java NIO中,有一些关键的概念和组成部分: - **Channel(通道)**: Channel表示数据的源头或目的地,可以是文件、网络连接、管道等。不同类型的Channel具有不同的特性和用途。 - **Buffer(缓冲区)**: Buffer是一个存储数据的区域,可以通过Channel进行读写。不同类型的Buffer提供了不同的数据操作方法。 - **Selector(选择器)**: Selector是一个多个Channel的管理器,它可以监听多个Channel的事件,当某个Channel准备好进行读写时,Selector会通知相应的线程处理。 - **Non-blocking(非阻塞)**: Java NIO提供了一种非阻塞的IO模式,在进行IO操作时,线程不会被阻塞,可以继续执行其他任务。 Java NIO的核心是Channel和Buffer,它们配合使用可以实现高效的IO操作。下一章节将重点介绍Channel通道的概念和使用方法。 # 2. 理解Channel通道 ### 2.1 Channel通道概述 在Java NIO中,Channel是一种可读写的高级IO流,用于在字节或字符序列与底层源或目标之间进行有效的传输。Channel可以使用缓冲区(Buffer)进行数据传输,其提供了一种非阻塞的IO操作方式。 与传统的IO流相比,Channel通道具有更高的效率和更强的扩展性。它可以与Selector(选择器)一起使用,实现单线程管理多个Channel的读写操作,从而降低了系统资源的消耗。 Java NIO中的Channel接口位于`java.nio.channels`包下,并且包含多个具体的实现类,如`FileChannel`、`SocketChannel`、`ServerSocketChannel`等。 ### 2.2 不同类型的Channel及其特性 Java NIO中提供了多种类型的Channel,每种类型的Channel都适用于不同的IO场景。下面是几个常用的Channel类型及其特性: - FileChannel:用于文件的读写操作,从文件中读取数据到缓冲区,或将数据从缓冲区写入文件。 - SocketChannel:用于TCP网络通信,可以与远程服务器进行连接,并发送和接收数据。 - ServerSocketChannel:用于监听客户端的TCP连接请求,并生成与每个客户端的SocketChannel连接。 ### 2.3 Channel的读写操作 使用Channel进行数据的读写操作基本上遵循以下几个步骤: 1. 创建一个Channel对象,一般通过具体的Channel类型的工厂方法来获取。 2. 打开Channel,即调用通道的`open()`方法。 3. 创建一个缓冲区(Buffer)对象,用于存储数据。 4. 从Channel中读取数据到缓冲区,或将数据从缓冲区写入Channel。 5. 关闭Channel,释放资源。 下面是一个简单的示例代码,演示了如何使用FileChannel进行文件的读写操作: ```java import java.io.RandomAccessFile; import java.nio.ByteBuffer; import java.nio.channels.FileChannel; public class FileChannelExample { public static void main(String[] args) { try { // 打开文件通道 RandomAccessFile file = new RandomAccessFile("data.txt", "rw"); FileChannel channel = file.getChannel(); // 创建缓冲区 ByteBuffer buffer = ByteBuffer.allocate(48); // 从通道读取数据到缓冲区 int bytesRead = channel.read(buffer); // 循环读取数据并打印 while (bytesRead != -1) { System.out.println("Read " + bytesRead + " bytes"); // 将缓冲区从写模式切换为读模式 buffer.flip(); while (buffer.hasRemaining()) { System.out.print((char) buffer.get()); } // 清空缓冲区 buffer.clear(); // 继续从通道读取数据到缓冲区 bytesRead = channel.read(buffer); } // 关闭通道 channel.close( ```
corwn 最低0.47元/天 解锁专栏
买1年送3月
点击查看下一篇
profit 百万级 高质量VIP文章无限畅学
profit 千万级 优质资源任意下载
profit C知道 免费提问 ( 生成式Al产品 )

相关推荐

text/html
Java NIO非堵塞应用通常适用用在I/O读写等方面,我们知道,系统运行的性能瓶颈通常在I/O读写,包括对端口和文件的操作上,过去,在打开一个I/O通道后,read()将一直等待在端口一边读取字节内容,如果没有内容进来,read()也是傻傻的等,这会影响我们程序继续做其他事情,那么改进做法就是开设线程,让线程去等待,但是这样做也是相当耗费资源的。 Java NIO非堵塞技术实际是采取Reactor模式,或者说是Observer模式为我们监察I/O端口,如果有内容进来,会自动通知我们,这样,我们就不必开启多个线程死等,从外界看,实现了流畅的I/O读写,不堵塞了。 Java NIO出现不只是一个技术性能的提高,你会发现网络上到处在介绍它,因为它具有里程碑意义,从JDK1.4开始,Java开始提高性能相关的功能,从而使得Java在底层或者并行分布式计算等操作上已经可以和C或Perl等语言并驾齐驱。 如果你至今还是在怀疑Java的性能,说明你的思想和观念已经完全落伍了,Java一两年就应该用新的名词来定义。从JDK1.5开始又要提供关于线程、并发等新性能的支持,Java应用在游戏等适时领域方面的机会已经成熟,Java在稳定自己中间件地位后,开始蚕食传统C的领域。 本文主要简单介绍NIO的基本原理,在下一篇文章中,将结合Reactor模式和著名线程大师Doug Lea的一篇文章深入讨论。 NIO主要原理和适用。 NIO 有一个主要的类Selector,这个类似一个观察者,只要我们把需要探知的socketchannel告诉Selector,我们接着做别的事情,当有事件发生时,他会通知我们,传回一组SelectionKey,我们读取这些Key,就会获得我们刚刚注册过的socketchannel,然后,我们从这个Channel中读取数据,放心,包准能够读到,接着我们可以处理这些数据。 Selector内部原理实际是在做一个对所注册的channel的轮询访问,不断的轮询(目前就这一个算法),一旦轮询到一个channel有所注册的事情发生,比如数据来了,他就会站起来报告,交出一把钥匙,让我们通过这把钥匙来读取这个channel的内容。 了解了这个基本原理,我们结合代码看看使用,在使用上,也在分两个方向,一个是线程处理,一个是用非线程,后者比较简单,看下面代码: import java.io.*; import java.nio.*; import java.nio.channels.*; import java.nio.channels.spi.*; import java.net.*; import java.util.*; /** * * @author Administrator * @version */ public class NBTest {   /** Creates new NBTest */   public NBTest()   {   }   public void startServer() throws Exception   {   int channels = 0;   int nKeys = 0;   int currentSelector = 0;   //使用Selector   Selector selector = Selector.open();   //建立Channel 并绑定到9000端口   ServerSocketChannel ssc = ServerSocketChannel.open();   InetSocketAddress address = new InetSocketAddress(InetAddress.getLocalHost(),9000);   ssc.socket().bind(address);   //使设定non-blocking的方式。   ssc.configureBlocking(false);   //向Selector注册Channel及我们有兴趣的事件   SelectionKey s = ssc.register(selector, SelectionKey.OP_ACCEPT);   printKeyInfo(s);   while(true) //不断的轮询   {     debug("NBTest: Starting select");     //Selector通过select方法通知我们我们感兴趣的事件发生了。     nKeys = selector.select();     //如果有我们注册的事情发生了,它的传回值就会大于0     if(nKeys > 0)     {       debug("NBTest: Number of keys after select operation: " +nKeys);       //Selector传回一组SelectionKeys       //我们从这些key中的channel()方法中取得我们刚刚注册的channel。       Set selectedKeys = selector.selectedKeys();       Iterator i = selectedKeys.iterator();       while(i.hasNext())       {          s = (SelectionKey) i.next();          printKeyInfo(s);          debug("NBTest: Nr Keys in selector: " +selector.keys().size());          //一个key被处理完成后,就都被从就绪关键字(ready keys)列表中除去          i.remove();          if(s.isAcceptable())          {            // 从channel()中取得我们刚刚注册的channel。            Socket socket = ((ServerSocketChannel)s.channel()).accept().socket();            SocketChannel sc = socket.getChannel();            sc.configureBlocking(false);            sc.register(selector, SelectionKey.OP_READ |SelectionKey.OP_WRITE);                       System.out.println(++channels);          }          else          {            debug("NBTest: Channel not acceptable");          }       }    }    else    {       debug("NBTest: Select finished without any keys.");    }   } } private static void debug(String s) {   System.out.println(s); } private static void printKeyInfo(SelectionKey sk) {   String s = new String();   s = "Att: " + (sk.attachment() == null ? "no" : "yes");   s += ", Read: " + sk.isReadable();   s += ", Acpt: " + sk.isAcceptable();   s += ", Cnct: " + sk.isConnectable();   s += ", Wrt: " + sk.isWritable();   s += ", Valid: " + sk.isValid();   s += ", Ops: " + sk.interestOps();   debug(s); } /** * @param args the command line arguments */ public static void main (String args[]) {   NBTest nbTest = new NBTest();   try   {     nbTest.startServer();   }     catch(Exception e)   {     e.printStackTrace();   } } } 这是一个守候在端口9000的noblock server例子,如果我们编制一个客户端程序,就可以对它进行互动操作,或者使用telnet 主机名 90000 可以链接上。 通过仔细阅读这个例程,相信你已经大致了解NIO的原理和使用方法,下一篇,我们将使用多线程来处理这些数据,再搭建一个自己的Reactor模式。

李_涛

知名公司架构师
拥有多年在大型科技公司的工作经验,曾在多个大厂担任技术主管和架构师一职。擅长设计和开发高效稳定的后端系统,熟练掌握多种后端开发语言和框架,包括Java、Python、Spring、Django等。精通关系型数据库和NoSQL数据库的设计和优化,能够有效地处理海量数据和复杂查询。
专栏简介
本专栏着重介绍了如何利用Java NIO(New I/O)技术实现高性能和高并发的编程。专栏内容从Java NIO的基础概念入手,深入探讨了其在高性能并发编程中的应用,涵盖了NIO的阻塞与非阻塞模式比较、Buffer缓冲区的应用、Channel通道的使用方法、Selector选择器的作用、多路复用与事件驱动模型等方面。此外,专栏还详细讨论了NIO与传统IO操作的性能对比、TCP与UDP协议的实现与比较、字符编解码、批量传输与零拷贝技术、文件读写速度优化等实际应用案例。通过本专栏的学习,读者能够全面了解Java NIO技术,并学会在实际项目中利用NIO实现高性能高并发的编程,为Java开发者在网络编程和IO操作中提供了全面而实用的指导。
最低0.47元/天 解锁专栏
买1年送3月
百万级 高质量VIP文章无限畅学
千万级 优质资源任意下载
C知道 免费提问 ( 生成式Al产品 )

最新推荐

【STAR-CCM+进阶技巧】:专家分析高级表面处理方法及案例

![STAR-CCM+复杂表面几何处理与网格划分](https://www.aerofem.com/assets/images/slider/_1000x563_crop_center-center_75_none/axialMultipleRow_forPics_Scalar-Scene-1_800x450.jpg) # 摘要 本文深入探讨了STAR-CCM+软件在表面处理方面的应用与实践,包括基础理论、高级方法以及实际案例分析。文章首先介绍了表面处理的基础知识,然后详细阐述了高级表面处理技术的理论和面向对象的方法,并探讨了网格独立性、网格质量以及亚格子尺度模型的应用。在实践应用方面,文章

LTE网络优化基础指南:掌握核心技术与工具提升效率

![LTE网络优化基础指南:掌握核心技术与工具提升效率](http://blogs.univ-poitiers.fr/f-launay/files/2021/06/Figure11.png) # 摘要 本文旨在全面介绍LTE网络优化的概念及其重要性,并深入探讨其关键技术与理论基础。文章首先明确了LTE网络架构和组件,分析了无线通信原理,包括信号调制、MIMO技术和OFDMA/SC-FDMA等,随后介绍了性能指标和KPI的定义与评估方法。接着,文中详细讨论了LTE网络优化工具、网络覆盖与容量优化实践,以及网络故障诊断和问题解决策略。最后,本文展望了LTE网络的未来发展趋势,包括与5G的融合、新

IGMP v2报文结构详解:网络工程师必备的协议细节深度解读

![IGMP v2报文结构详解:网络工程师必备的协议细节深度解读](https://img-blog.csdnimg.cn/img_convert/2e430fcf548570bdbff7f378a8afe27c.png) # 摘要 本文全面探讨了互联网组管理协议版本2(IGMP v2),详细介绍了其报文结构、工作原理、处理流程以及在组播网络中的关键作用。通过深入分析IGMP v2报文的类型、字段以及它们在组播通信中的应用,本文揭示了该协议在维护网络稳定性和管理组播数据流分发方面的重要性。此外,文中还涉及了IGMP v2的配置与故障排除方法,并对其在大型网络中的应用挑战和未来发展趋势进行了展

【PDETOOL进阶技巧】:initmesh高级功能与问题解决全攻略

![【PDETOOL进阶技巧】:initmesh高级功能与问题解决全攻略](https://raw.githubusercontent.com/liubenyuan/eitmesh/master/doc/images/mesh_plot.png) # 摘要 本文全面介绍了一个名为initmesh的网格生成工具及其与PDETOOL软件的集成。第一章概述了initmesh的简介和基本功能,第二章详细阐述了initmesh的基础功能及其在偏微分方程中的应用。第三章深入探讨了initmesh的高级功能,包括高精度网格生成技术和网格质量评估与改进方法。第四章讨论了initmesh在实际应用中遇到的问题

艺术照明的革新:掌握Art-Net技术的7大核心优势

![艺术照明的革新:掌握Art-Net技术的7大核心优势](https://greenmanual.rutgers.edu/wp-content/uploads/2019/03/NR-High-Efficiency-Lighting-Fig-1.png) # 摘要 Art-Net作为一种先进的网络照明控制技术,其发展历程、理论基础、应用实践及优势展示构成了本文的研究核心。本文首先概述了Art-Net技术,随后深入分析了其理论基础,包括网络照明技术的演变、Art-Net协议架构及控制原理。第三章聚焦于Art-Net在艺术照明中的应用,从设计项目到场景创造,再到系统的调试与维护,详尽介绍了艺术照

【ANSYS软件使用入门】:零基础快速上手指南

![ANSYS 常见问题总结](https://blog-assets.3ds.com/uploads/2024/04/high_tech_1-1024x570.png) # 摘要 本文详细介绍ANSYS软件的核心功能、操作流程以及在多个工程领域的应用实例。首先,概述ANSYS软件的基本概念、界面布局和功能模块。接着,深入解释其在结构分析、流体分析、电磁场分析中的基本理论、方法和步骤。针对每种分析类型,本文均提供了相应的应用实例,帮助理解软件在实际工程问题中的应用。最后,探讨了ANSYS软件的优化方法和后处理技巧,包括如何高效地提取和处理结果数据、生成和分析结果图形。通过本文,读者可以获得一

高效Java客户端构建秘诀:TongHTP2.0框架精讲

![高效Java客户端构建秘诀:TongHTP2.0框架精讲](https://img-blog.csdnimg.cn/ba283186225b4265b776f2cfa99dd033.png) # 摘要 TongHTP2.0框架作为一款先进的网络编程框架,以非阻塞I/O模型和多路复用技术为基础,提供了一系列核心组件以优化网络通信和数据处理。本文详细介绍了TongHTP2.0的架构优势、核心组件及其在安全通信、插件化架构、性能监控等方面的应用。通过高级特性应用案例分析,本文展示了TongHTP2.0在实际项目中的强大功能与灵活性,包括构建RESTful API客户端、实现高级协议客户端和大数

【图形化表达】:用户手册中的视觉效率提升秘技

![UserManual](https://res.cloudinary.com/monday-blogs/w_1400,h_479,c_fit/fl_lossy,f_auto,q_auto/wp-blog/2022/03/image1-20.png) # 摘要 用户手册的视觉设计对于提升用户的理解度和操作便捷性至关重要。本文详细探讨了用户手册中图形化元素的应用与设计原则,包括信息图表、图标和按钮等的种类选择与风格一致性。同时,强调了图形化元素排版布局对于空间分配、视觉平衡、色彩及对比度的重要性。交互设计方面,创新的交云动效果与用户体验反馈机制被提出。第三章分析了图形化表达在用户手册不同环节

【深入Matlab】:打造无敌多元回归模型的三大秘诀

![利用_Matlab作多元回归分析.doc](https://public.fangzhenxiu.com/fixComment/commentContent/imgs/1619787575694_8a6igo.jpg?imageView2/0) # 摘要 多元回归模型是统计学和数据分析中的一种核心工具,用于研究一个因变量与多个自变量之间的关系。本文首先介绍了多元回归模型的基础知识和理论基础,包括线性与非线性回归的区别、回归模型的假设和检验,以及模型的建立过程,如参数估计、显著性检验和诊断改进。随后,探讨了多元回归模型的优化策略,如特征选择、正则化方法以及交叉验证等。高级应用章节深入分析了