C#中的异步流:使用async_await处理集合和序列的高级技巧

发布时间: 2024-10-21 08:09:27 阅读量: 1 订阅数: 3
![异步流](https://img-blog.csdnimg.cn/img_convert/166cf713185f445b8e0aef66f2ddd0e2.png) # 1. C#中的异步流与async/await基础 在软件开发中,处理异步操作是提高应用程序响应性和性能的关键。C#作为一种现代编程语言,从早期版本起就提供了对异步编程的支持。随着C# 8.0的发布,异步流的概念被引入,这允许开发者以更自然的方式处理异步序列数据。本章旨在为开发者提供异步流与async/await基础的全面介绍。 ## 1.1 异步编程简介 异步编程允许程序在等待诸如I/O操作或长时间计算任务的完成时继续执行其他任务。传统的异步编程模式可能会导致代码复杂和难以维护。C#引入的async/await特性简化了异步编程模型,通过使用这些关键字,开发者可以编写看起来和同步代码一样的异步代码。 ## 1.2 async/await的基础 为了使用async/await,你需要编写一个以“async”修饰符标记的方法,并在该方法中使用“await”关键字来异步地等待一个任务。这种方式可以避免回调地狱和事件驱动编程带来的问题。 ```csharp public async Task<int> DownloadDataAsync(string url) { var httpClient = new HttpClient(); var data = await httpClient.GetStringAsync(url); return data.Length; } ``` 在这个示例中,`DownloadDataAsync`方法异步地下载了数据,并返回了数据长度。这展示了如何用async/await来处理简单的异步操作。 ## 1.3 异步流的引入 随着异步编程在处理大量数据时的需求增长,C#引入了对异步流的支持。异步流使开发者能够以异步方式顺序地产生一系列值。这对于诸如处理网络数据流、文件读写操作等场景尤其有用。我们将通过后续章节深入探讨异步流的概念、操作和在实际开发中的应用。 通过本章的学习,你将对C#中异步流和async/await有一个初步的认识,并为深入理解后续章节奠定基础。 # 2. 异步流的操作和转换 ### 2.1 异步流的基本概念 #### 2.1.1 同步流与异步流的区别 在讨论异步流之前,首先需要明确同步流与异步流的基本区别。同步流是在立即返回的序列上进行操作,当遍历集合中的元素时,每个元素都在等待前一个元素处理完成。这种情况下,整个集合必须等待上一个操作完成,才能继续执行下一个操作。 而异步流则是基于异步操作的一系列值的流。当使用异步流时,不需要等待所有元素被处理完毕即可开始操作下一个元素。这样的设计允许更高效地利用系统资源,特别是在IO密集型任务中,可以大幅提升性能。 异步流在.NET中的实现依赖于`IAsyncEnumerable<T>`接口,通过这个接口可以定义和消费异步流。它的设计目的是为了处理大量的数据或长时间运行的任务,而不会阻塞线程池或UI线程。 #### 2.1.2 创建异步流的方法 创建异步流有多种方法,最常见的方式之一是使用`async`和`await`关键字。例如,当需要从网络资源中异步读取数据时,可以使用`HttpClient`类提供的方法,并结合异步流来处理。 下面是一个创建异步流的示例代码: ```csharp using System; using System.Collections.Generic; using System.IO; using System.Threading.Tasks; public static async IAsyncEnumerable<int> ReadNumbersFromFileAsync(string path) { using var streamReader = File.OpenText(path); while (!streamReader.EndOfStream) { var line = await streamReader.ReadLineAsync(); if (int.TryParse(line, out int number)) { yield return number; } } } ``` 在这个示例中,`ReadNumbersFromFileAsync`方法使用异步流逐行读取文件中的整数。每读取到一个有效的整数,就通过`yield return`语句返回它。这样,调用方可以异步地获取并处理每一个整数,而无需等待整个文件读取完毕。 ### 2.2 异步流的操作符应用 #### 2.2.1 使用Where筛选元素 `Where`是LINQ操作符之一,它在异步流中的作用是对流中的元素进行筛选。它适用于异步流操作,与同步流中的功能相同,但不会阻塞线程。 下面是如何在异步流中使用`Where`操作符的示例代码: ```csharp using System; using System.Collections.Generic; using System.Linq; using System.Threading.Tasks; public static async Task Main(string[] args) { var numbers = ReadNumbersFromFileAsync("numbers.txt"); // 使用异步流进行筛选 var evenNumbers = numbers.Where(number => number % 2 == 0); // 迭代筛选后的异步流并打印结果 await foreach (var number in evenNumbers) { Console.WriteLine(number); } } ``` #### 2.2.2 使用Select转换元素 `Select`操作符在异步流中的功能与`Where`类似,但它的作用是转换流中的元素。它允许将异步流中的每个元素通过一个转换函数,将元素从一个类型转换为另一个类型。 下面是使用`Select`操作符将异步流中的整数转换为它们的平方的示例代码: ```csharp // 使用异步流进行转换 var squaredNumbers = numbers.Select(number => number * number); // 迭代转换后的异步流并打印结果 await foreach (var squared in squaredNumbers) { Console.WriteLine(squared); } ``` #### 2.2.3 使用Aggregate进行累积操作 `Aggregate`操作符在异步流中用于对整个序列进行累积操作。它接受一个种子值作为初始值,并将一个累积函数应用于序列中的所有元素,最终得到一个单一结果。 下面是一个使用`Aggregate`操作符计算所有数字总和的示例代码: ```csharp // 使用异步流进行累积操作 var sum = await numbers.AggregateAsync(0, (currentSum, number) => currentSum + number); Console.WriteLine($"Total sum of numbers: {sum}"); ``` ### 2.3 异步流的异常处理和取消 #### 2.3.1 异常处理策略 当处理异步流时,可能会遇到各种异常情况,例如网络中断、文件读写错误等。异步流提供了处理这些异常的机制。如果异步流中的操作抛出异常,会中止整个流的处理。 对于异步流中的异常处理,通常会在`foreach`循环中使用`try-catch`语句进行捕获: ```csharp // 异步流迭代处理 await foreach (var number in numbers) { try { // 进行一些可能会抛出异常的操作 var result = ProcessNumber(number); Console.WriteLine(result); } catch (Exception ex) { Console.WriteLine($"An error occurred: {ex.Message}"); // 可以在这里进行异常处理的逻辑 } } ``` #### 2.3.2 取消令牌在异步流中的使用 异步流支持使用取消令牌(`CancellationToken`)来取消流的执行。在异步流中使用取消令牌可以提高应用程序的响应性,特别是在需要中止长时间运行的任务时。 下面是如何在异步流中使用取消令牌的示例代码: ```csharp CancellationTokenSource cts = new CancellationTokenSource(); var token = cts.Token; // 使用异步流并在需要时取消操作 var asyncStream = numbers.WithCancellation(token); await foreach (var number in asyncStrea ```
corwn 最低0.47元/天 解锁专栏
1024大促
点击查看下一篇
profit 百万级 高质量VIP文章无限畅学
profit 千万级 优质资源任意下载
profit C知道 免费提问 ( 生成式Al产品 )

相关推荐

SW_孙维

开发技术专家
知名科技公司工程师,开发技术领域拥有丰富的工作经验和专业知识。曾负责设计和开发多个复杂的软件系统,涉及到大规模数据处理、分布式系统和高性能计算等方面。
专栏简介
本专栏深入探讨了 C# 中的异步编程模型,旨在帮助开发人员掌握异步编程的精髓。从初探异步操作的基本原理,到深入理解 Task Parallel Library,再到掌握 async_await 背后的故事,专栏循序渐进地介绍了异步编程的各个方面。此外,专栏还分析了 Task、ThreadPool 和 Begin_EndInvoke 的最佳实践,并提供了处理集合和序列的高级技巧。通过案例研究和常见问题解答,专栏帮助开发人员避免陷阱,实现从同步到异步代码的完美重构。专栏还涵盖了 I/O 密集型任务、数据库操作、依赖注入和异步数据绑定的异步编程实践,为开发人员提供了构建高效、响应迅速的应用程序所需的知识和技巧。
最低0.47元/天 解锁专栏
1024大促
百万级 高质量VIP文章无限畅学
千万级 优质资源任意下载
C知道 免费提问 ( 生成式Al产品 )

最新推荐

内联函数在嵌入式系统中的应用:资源优化的5大策略

![内联函数在嵌入式系统中的应用:资源优化的5大策略](https://img-blog.csdnimg.cn/abaadd9667464de2949d78d40c4e9135.png) # 1. 内联函数与嵌入式系统概述 ## 1.1 内联函数的简介 内联函数是C++编程语言中一种重要的优化手段,其基本思想是将函数的代码直接插入到调用该函数的地方,以减少函数调用时的开销。这种机制尤其适用于频繁调用的小函数,能够有效地减少程序运行时的指令跳转,提高执行效率。 ## 1.2 内联函数与嵌入式系统的关系 嵌入式系统通常资源受限,CPU、内存和存储空间都非常宝贵。在这种环境下,即使是微小的性能提

C++编译器优化:优化级别选择,性能的黄金法则

![C++编译器优化:优化级别选择,性能的黄金法则](https://fastbitlab.com/wp-content/uploads/2022/11/Figure-2-7-1024x472.png) # 1. C++编译器优化概述 C++编译器优化是提升程序运行效率的关键步骤,涉及将源代码转换为机器码的过程中,通过各种算法减少执行时间和资源消耗的过程。理解并运用优化技术,对于开发高性能应用程序至关重要。编译器优化包括许多不同的技术,如循环展开、内联函数、死代码消除等,这些技术的应用可以显著提高程序性能。然而,优化也可能引入新的问题,如减少代码的可读性和调试难度,因此开发者需要权衡各种因素

C#线程同步进阶技巧:掌握Monitor、Mutex和SemaphoreSlim的最佳实践

# 1. C#线程同步基础回顾 在多线程编程中,线程同步是一个至关重要的概念。理解线程同步机制对于开发安全、高效的多线程应用程序至关重要。本章旨在为读者提供对C#中线程同步技术的初级到中级水平的理解和回顾,为深入探讨更高级的同步工具铺平道路。 ## 1.1 线程同步的基本概念 线程同步确保在多线程环境中多个线程能够协调对共享资源的访问,防止数据竞争和条件竞争问题。为了实现线程同步,C#提供了多种机制,包括但不限于锁、信号量、互斥量等。 ## 1.2 同步的必要性 在多线程程序中,如果多个线程同时访问和修改同一数据,可能导致数据不一致。同步机制可以保证在任一时刻,只有一个线程可以操作共

C#并发编程揭秘:lock与volatile协同工作原理

![并发编程](https://img-blog.csdnimg.cn/912c5acc154340a1aea6ccf0ad7560f2.png) # 1. C#并发编程概述 ## 1.1 并发编程的重要性 在现代软件开发中,尤其是在面对需要高吞吐量和响应性的场景时,C#并发编程成为了构建高效程序不可或缺的一部分。并发编程不仅可以提高应用程序的性能,还能更好地利用现代多核处理器的计算能力。理解并发编程的概念和技巧,可以帮助开发者构建更加稳定和可扩展的应用。 ## 1.2 C#的并发模型 C#提供了丰富的并发编程模型,从基础的线程操作,到任务并行库(TPL),再到.NET 4引入的并行LIN

Java Optional在并发编程中的应用:【安全处理并行流】实战指南

![Java Optional在并发编程中的应用:【安全处理并行流】实战指南](https://raygun.com/blog/images/java-performance-tips/parallel.png) # 1. Java Optional简介 Java Optional 类是一个容器对象,用来包含一个可能为空的值。Optional 的设计初衷是为了减少空指针异常的发生,使代码更加清晰和易于维护。在Java 8之前,处理可能为null的值时,我们通常需要书写多行的if-else代码来进行非空判断,这样的代码不仅繁琐而且容易出错。随着Optional类的引入,我们可以通过一系列优雅的

【API设计艺术】:打造静态链接库的清晰易用接口

![【API设计艺术】:打造静态链接库的清晰易用接口](https://img-blog.csdnimg.cn/f2cfe371176d4c44920b9981fe7b21a4.png) # 1. 静态链接库的设计基础 静态链接库是一种编译时包含到可执行文件中的代码集合,它们在程序运行时不需要再进行链接。为了设计出健壮、高效的静态链接库,理解其基础至关重要。本章将首先介绍静态链接库的基本概念,包括其工作原理和一般结构,然后再探讨如何组织源代码以及构建系统与构建脚本的使用。通过深入解析这些基础概念,能够为之后章节关于API设计原则和实现技术的探讨奠定坚实的基础。 # 2. API设计原则

【Go接口转换】:nil值处理策略与实战技巧

![Go的类型转换](http://style.iis7.com/uploads/2021/06/18274728204.png) # 1. Go接口转换基础 在Go语言中,接口(interface)是一种抽象类型,它定义了一组方法的集合。接口转换(类型断言)是将接口值转换为其他类型的值的过程。这一转换是Go语言多态性的体现之一,是高级程序设计不可或缺的技术。 ## 1.1 接口值与动态类型 接口值由两部分组成:一个具体的值和该值的类型。Go语言的接口是隐式类型,允许任何类型的值来满足接口,这意味着不同类型的对象可以实现相同的接口。 ```go type MyInterface int

Java函数式编程真相大揭秘:误解、真相与高效编码指南

![Java Functional Interface(函数式接口)](https://techndeck.com/wp-content/uploads/2019/08/Consumer_Interface_Java8_Examples_FeaturedImage_Techndeck-1-1024x576.png) # 1. Java函数式编程入门 ## 简介 Java函数式编程是Java 8引入的一大特性,它允许我们以更加函数式的风格编写代码。本章将带你初步了解函数式编程,并引导你开始你的Java函数式编程之旅。 ## 基础概念 函数式编程与面向对象编程不同,它主要依赖于使用纯函数进行数

C#锁机制大揭秘:Monitor类与lock语句的深度比较

![Monitor类](https://img-blog.csdnimg.cn/direct/5361672684744446a94d256dded87355.png) # 1. C#中的线程同步和锁机制 在多线程编程中,同步机制是确保线程安全、避免竞态条件的关键。C#作为现代编程语言,提供了多种线程同步工具,其中包括锁机制。锁不仅可以帮助我们保护共享资源,防止多个线程同时访问同一资源导致的数据不一致,还能帮助我们实现更复杂的线程协作模式。本章将从线程同步的基本概念入手,逐步深入到锁机制的使用和优化策略,带领读者理解C#中如何高效地使用锁来编写可靠且高效的多线程程序。 # 2. 深入理解M

【Go语言类型系统全解】:深入理解类型断言的原理与应用

![【Go语言类型系统全解】:深入理解类型断言的原理与应用](https://vertex-academy.com/tutorials/wp-content/uploads/2016/06/Boolean-Vertex-Academy.jpg) # 1. Go语言类型系统概述 Go语言类型系统的核心设计理念是简洁和高效。作为一种静态类型语言,Go语言在编译阶段对变量的类型进行检查,这有助于捕捉到潜在的类型错误,提高程序的稳定性和安全性。Go语言的类型系统不仅包含了传统的内置类型,如整型、浮点型和字符串类型,而且还支持复合类型,比如数组、切片、映射(map)和通道(channel),这些类型使