TensorFlow GPU安装后如何测试GPU是否正确识别与工作?
发布时间: 2024-04-11 18:39:01 阅读量: 131 订阅数: 37
TensorFlow-gpu测试
# 1. 准备工作
在进行TensorFlow GPU版本的安装前,首先需要检查GPU驱动是否正确安装。对于Windows系统,可以通过查看设备管理器中的显卡信息来确认;而对于Linux系统,可以通过命令行查看GPU相关信息。
安装TensorFlow GPU版本之前,建议先下载适用于GPU的安装包,并设置Python虚拟环境以避免与其他项目的Python库冲突。随后,通过pip工具来安装TensorFlow GPU,确保版本与CUDA、cuDNN匹配以获得更好的性能表现。
这些准备工作的核心目的在于确保TensorFlow能够正确地识别GPU,并为后续的GPU性能测试和优化做好准备。
# 2. 测试GPU识别
#### 2.1 使用TensorFlow验证GPU是否被识别
当我们安装好TensorFlow GPU版本后,接下来的关键步骤是验证GPU是否被正确识别和启用。这可以通过编写一个简单的TensorFlow程序来实现。
##### 2.1.1 编写一个简单的TensorFlow程序
下面是一个简单的TensorFlow程序示例,用于检查GPU是否被正确地识别:
```python
import tensorflow as tf
# 创建一个常量张量
a = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[2, 3], name='a')
# 创建另外一个常量张量
b = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[3, 2], name='b')
# 矩阵相乘
c = tf.matmul(a, b)
# 打印结果
print(c)
```
##### 2.1.2 运行程序查看GPU是否被识别
在命令行中执行上述程序,如果GPU被正确识别,则会输出类似以下内容:
```
2021-04-01 10:54:36.208579: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library cudart64_110.dll
2021-04-01 10:54:36.484321: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library cublas64_11.dll
2021-04-01 10:54:36.677348: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library cublasLt64_11.dll
2021-04-01 10:54:36.772582: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library cufft64_10.dll
2021-04-01 10:54:36.872538: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library curand64_10.dll
2021-04-01 10:54:37.211682: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library cusolver64_10.dll
2021-04-01 10:54:37.368764: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library cusparse64_11.dll
2021-04-01 10:54:37.398292: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library cudnn64_8.dll
2021-04-01 10:54:37.400224: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1862] Adding visible gpu devices: 0
```
##### 2.1.3 检查GPU相关信息
可以使用以下代码来查看TensorFlow当前是否使用了GPU:
```python
from tensorflow.python.client import device_lib
local_device_protos = device_lib.list_local_devices()
for device in loca
```
0
0