PHP+MySQL数据库事务处理全解析:从隔离级别到锁机制,保障数据一致性

发布时间: 2024-07-24 11:27:22 阅读量: 23 订阅数: 33
![PHP+MySQL数据库事务处理全解析:从隔离级别到锁机制,保障数据一致性](https://img-blog.csdnimg.cn/direct/7b0637957ce340aeb5914d94dd71912c.png) # 1. 数据库事务基础** 数据库事务是一组原子操作,要么全部成功,要么全部失败。事务具有以下特性: - **原子性(Atomicity):**事务中的所有操作要么全部执行成功,要么全部失败回滚。 - **一致性(Consistency):**事务执行前后的数据库状态都满足业务规则。 - **隔离性(Isolation):**并发执行的事务彼此独立,不会相互影响。 - **持久性(Durability):**一旦事务提交,其对数据库的修改将永久保存,即使系统发生故障。 # 2. PHP+MySQL事务处理 ### 2.1 事务的特性和隔离级别 #### 2.1.1 事务的特性 事务具有四大特性,即**原子性(Atomicity)**、**一致性(Consistency)**、**隔离性(Isolation)**和**持久性(Durability)**,简称ACID。 - **原子性:**事务中的所有操作要么全部成功,要么全部失败。 - **一致性:**事务执行前后,数据库的状态必须保持一致,即满足业务规则。 - **隔离性:**多个事务并发执行时,彼此之间互不影响,就像在各自独立的环境中执行一样。 - **持久性:**一旦事务提交成功,其对数据库所做的修改将永久保存,即使系统发生故障也不会丢失。 #### 2.1.2 MySQL的隔离级别 MySQL支持四种隔离级别,分别为: | 隔离级别 | 说明 | |---|---| | **读未提交** | 事务可以读取其他事务未提交的数据,但可能会出现脏读现象。 | | **读已提交** | 事务只能读取其他事务已提交的数据,避免了脏读,但可能会出现不可重复读现象。 | | **可重复读** | 事务在执行过程中,不会被其他事务提交的修改所影响,避免了不可重复读,但可能会出现幻读现象。 | | **串行化** | 事务串行执行,完全避免了脏读、不可重复读和幻读现象,但会严重影响并发性能。 | ### 2.2 事务操作语句 #### 2.2.1 开始事务 ```php mysqli_begin_transaction($link); ``` 开始一个事务,`$link`为数据库连接资源。 #### 2.2.2 提交事务 ```php mysqli_commit($link); ``` 提交事务,将事务中所做的修改永久保存到数据库中。 #### 2.2.3 回滚事务 ```php mysqli_rollback($link); ``` 回滚事务,撤销事务中所做的所有修改。 ### 2.3 事务控制函数 #### 2.3.1 mysqli_autocommit() ```php mysqli_autocommit($link, $mode); ``` 设置事务的自动提交模式。`$link`为数据库连接资源,`$mode`为布尔值,`true`表示自动提交,`false`表示手动提交。 #### 2.3.2 mysqli_commit() ```php mysqli_commit($link); ``` 提交事务,将事务中所做的修改永久保存到数据库中。 #### 2.3.3 mysqli_rollback() ```php mysqli_rollback($link); ``` 回滚事务,撤销事务中所做的所有修改。 # 3.1 锁的类型和特点 MySQL锁机制分为表级锁和行级锁两种类型,每种锁类型
corwn 最低0.47元/天 解锁专栏
买1年送3月
点击查看下一篇
profit 百万级 高质量VIP文章无限畅学
profit 千万级 优质资源任意下载
profit C知道 免费提问 ( 生成式Al产品 )

相关推荐

LI_李波

资深数据库专家
北理工计算机硕士,曾在一家全球领先的互联网巨头公司担任数据库工程师,负责设计、优化和维护公司核心数据库系统,在大规模数据处理和数据库系统架构设计方面颇有造诣。
专栏简介
本专栏深入探讨了 PHP 和 MySQL 数据库读取性能优化。从分析慢查询到实施索引和缓存,提供了全面的指南,帮助提升网站加载速度。此外,还深入分析了表锁和死锁问题,并提供了解决方案,以避免并发难题和系统瘫痪。专栏还涵盖了数据库连接池、备份与恢复、监控与报警、安全加固、性能测试与分析、迁移、分库分表、高可用架构和读写分离等重要主题。通过这些优化策略,网站开发者可以显著提升数据库读取性能,打造高性能、响应迅速的网站。

专栏目录

最低0.47元/天 解锁专栏
买1年送3月
百万级 高质量VIP文章无限畅学
千万级 优质资源任意下载
C知道 免费提问 ( 生成式Al产品 )

最新推荐

自然语言处理新视界:逻辑回归在文本分类中的应用实战

![自然语言处理新视界:逻辑回归在文本分类中的应用实战](https://aiuai.cn/uploads/paddle/deep_learning/metrics/Precision_Recall.png) # 1. 逻辑回归与文本分类基础 ## 1.1 逻辑回归简介 逻辑回归是一种广泛应用于分类问题的统计模型,它在二分类问题中表现尤为突出。尽管名为回归,但逻辑回归实际上是一种分类算法,尤其适合处理涉及概率预测的场景。 ## 1.2 文本分类的挑战 文本分类涉及将文本数据分配到一个或多个类别中。这个过程通常包括预处理步骤,如分词、去除停用词,以及特征提取,如使用词袋模型或TF-IDF方法

【案例分析】:金融领域中类别变量编码的挑战与解决方案

![【案例分析】:金融领域中类别变量编码的挑战与解决方案](https://www.statology.org/wp-content/uploads/2022/08/labelencode2-1.jpg) # 1. 类别变量编码基础 在数据科学和机器学习领域,类别变量编码是将非数值型数据转换为数值型数据的过程,这一步骤对于后续的数据分析和模型建立至关重要。类别变量编码使得模型能够理解和处理原本仅以文字或标签形式存在的数据。 ## 1.1 编码的重要性 类别变量编码是数据分析中的基础步骤之一。它能够将诸如性别、城市、颜色等类别信息转换为模型能够识别和处理的数值形式。例如,性别中的“男”和“女

K-近邻算法多标签分类:专家解析难点与解决策略!

![K-近邻算法(K-Nearest Neighbors, KNN)](https://techrakete.com/wp-content/uploads/2023/11/manhattan_distanz-1024x542.png) # 1. K-近邻算法概述 K-近邻算法(K-Nearest Neighbors, KNN)是一种基本的分类与回归方法。本章将介绍KNN算法的基本概念、工作原理以及它在机器学习领域中的应用。 ## 1.1 算法原理 KNN算法的核心思想非常简单。在分类问题中,它根据最近的K个邻居的数据类别来进行判断,即“多数投票原则”。在回归问题中,则通过计算K个邻居的平均

决策树在金融风险评估中的高效应用:机器学习的未来趋势

![决策树在金融风险评估中的高效应用:机器学习的未来趋势](https://learn.microsoft.com/en-us/sql/relational-databases/performance/media/display-an-actual-execution-plan/actualexecplan.png?view=sql-server-ver16) # 1. 决策树算法概述与金融风险评估 ## 决策树算法概述 决策树是一种被广泛应用于分类和回归任务的预测模型。它通过一系列规则对数据进行分割,以达到最终的预测目标。算法结构上类似流程图,从根节点开始,通过每个内部节点的测试,分支到不

市场营销的未来:随机森林助力客户细分与需求精准预测

![市场营销的未来:随机森林助力客户细分与需求精准预测](https://images.squarespace-cdn.com/content/v1/51d98be2e4b05a25fc200cbc/1611683510457-5MC34HPE8VLAGFNWIR2I/AppendixA_1.png?format=1000w) # 1. 市场营销的演变与未来趋势 市场营销作为推动产品和服务销售的关键驱动力,其演变历程与技术进步紧密相连。从早期的单向传播,到互联网时代的双向互动,再到如今的个性化和智能化营销,市场营销的每一次革新都伴随着工具、平台和算法的进化。 ## 1.1 市场营销的历史沿

预测模型中的填充策略对比

![预测模型中的填充策略对比](https://img-blog.csdnimg.cn/20190521154527414.PNG?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3l1bmxpbnpp,size_16,color_FFFFFF,t_70) # 1. 预测模型填充策略概述 ## 简介 在数据分析和时间序列预测中,缺失数据是一个常见问题,这可能是由于各种原因造成的,例如技术故障、数据收集过程中的疏漏或隐私保护等原因。这些缺失值如果

神经网络硬件加速秘技:GPU与TPU的最佳实践与优化

![神经网络硬件加速秘技:GPU与TPU的最佳实践与优化](https://static.wixstatic.com/media/4a226c_14d04dfa0e7f40d8b8d4f89725993490~mv2.png/v1/fill/w_940,h_313,al_c,q_85,enc_auto/4a226c_14d04dfa0e7f40d8b8d4f89725993490~mv2.png) # 1. 神经网络硬件加速概述 ## 1.1 硬件加速背景 随着深度学习技术的快速发展,神经网络模型变得越来越复杂,计算需求显著增长。传统的通用CPU已经难以满足大规模神经网络的计算需求,这促使了

梯度下降在线性回归中的应用:优化算法详解与实践指南

![线性回归(Linear Regression)](https://img-blog.csdnimg.cn/20191008175634343.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3dlaXhpbl80MTYxMTA0NQ==,size_16,color_FFFFFF,t_70) # 1. 线性回归基础概念和数学原理 ## 1.1 线性回归的定义和应用场景 线性回归是统计学中研究变量之间关系的常用方法。它假设两个或多个变

支持向量机在语音识别中的应用:挑战与机遇并存的研究前沿

![支持向量机](https://img-blog.csdnimg.cn/img_convert/dc8388dcb38c6e3da71ffbdb0668cfb0.png) # 1. 支持向量机(SVM)基础 支持向量机(SVM)是一种广泛用于分类和回归分析的监督学习算法,尤其在解决非线性问题上表现出色。SVM通过寻找最优超平面将不同类别的数据有效分开,其核心在于最大化不同类别之间的间隔(即“间隔最大化”)。这种策略不仅减少了模型的泛化误差,还提高了模型对未知数据的预测能力。SVM的另一个重要概念是核函数,通过核函数可以将低维空间线性不可分的数据映射到高维空间,使得原本难以处理的问题变得易于

端到端CNN学习:构建一体化深度学习管道的关键技术

![端到端CNN学习:构建一体化深度学习管道的关键技术](https://help-static-aliyun-doc.aliyuncs.com/assets/img/zh-CN/0868468961/p721665.png) # 1. 端到端CNN学习的基础理论 卷积神经网络(CNN)是深度学习领域内用于处理图像和视频数据的强大工具。本章节将为读者构建理解CNN的基本理论框架,为后续更深入的学习和应用打下坚实的基础。 ## 1.1 CNN的基本概念与工作原理 CNN是一种模仿生物视觉处理机制的深度神经网络。其特有的层级结构,包括卷积层、池化层和全连接层,可以自动且高效地从数据中提取特征

专栏目录

最低0.47元/天 解锁专栏
买1年送3月
百万级 高质量VIP文章无限畅学
千万级 优质资源任意下载
C知道 免费提问 ( 生成式Al产品 )