Python数据清洗技术之数据抽样与采样

发布时间: 2024-01-06 20:02:06 阅读量: 63 订阅数: 39
PDF

python使用pandas抽样训练数据中某个类别实例

# 1. 引言 ### 1.1 数据清洗的重要性 在数据分析和挖掘的过程中,数据清洗是一个至关重要的环节。原始数据往往存在各种问题,如缺失值、异常值、重复值等,这些问题如果不加处理直接参与分析,会影响到最终结论的准确性与可靠性。因此,数据清洗是数据预处理的基础,对于提高数据质量、准确性和可信度起着至关重要的作用。 ### 1.2 数据抽样与采样的定义与意义 数据抽样与采样是统计学中常用的技术,用于从大量数据中选择代表性样本,以便进行统计分析和推断。抽样是指从总体中选择部分个体作为样本的过程,而采样则是指从已抽取的样本中获取数据的过程。这两种方法能够减少研究成本、提高数据处理效率,同时也可以有效降低调研过程中的错误风险。 接下来,我们将详细介绍数据抽样与采样的相关技术和方法。 # 2. 数据抽样技术 数据抽样是从整体数据集中选择子集的过程,以便对整体数据集进行统计推断或分析。不同的抽样技术可以用于不同类型的数据集和分析目的。在本节中,我们将介绍三种常用的数据抽样技术:简单随机抽样、系统抽样和分层抽样。 #### 2.1 简单随机抽样 简单随机抽样是一种最基本的抽样技术,其核心是从总体中随机地选择样本,每个样本被选中的概率相同且相互独立。在Python中,可以使用random库实现简单随机抽样。 ```python import random # 从总体中进行简单随机抽样 population = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] sample_size = 5 sample = random.sample(population, sample_size) print(sample) ``` **注释:** 上面的代码通过random.sample()函数实现了对总体数据population进行简单随机抽样,选择了5个样本,并将结果打印输出。 **代码总结:** - 通过import random导入random库 - 使用random.sample(population, sample_size)对总体数据进行简单随机抽样 **结果说明:** 打印输出的sample即为抽样结果,包含5个随机选择的样本数据。 #### 2.2 系统抽样 系统抽样是从总体中按照一定的系统规则选择样本,例如每隔k个元素选择一个样本。系统抽样通常适用于元素有序排列的总体。下面是一个Python示例: ```python # 从总体中进行系统抽样 population = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] k = 2 # 每隔2个元素选择一个样本 sample = population[::k] print(sample) ``` **注释:** 上面的代码使用切片操作population[::k]实现了对总体数据population进行系统抽样,按照每隔2个元素选择一个样本,并将结果打印输出。 **代码总结:** - 通过切片操作population[::k]对总体数据进行系统抽样 **结果说明:** 打印输出的sample即为抽样结果,包含按照系统规则选择的样本数据。 #### 2.3 分层抽样 分层抽样是根据总体的特点将总体分成几个层级,然后分别从不同层级中进行随机抽样,以保证每个层级在样本中的代表性。在Python中,可以借助pandas库来实现分层抽样。 ```python import pandas as pd # 从总体中进行分层抽样 population = pd.DataFrame({'A': [1, 2, 3, 4, 5], 'B': [6, 7, 8, 9, 10]}) sample = population.groupby('A', group_keys=False).apply(lambda x: x.sample(2)) print(sample) ``` **注释:** 上面的代码使用pandas库对DataFrame类型的总体数据population进行分层抽样,按照列'A'进行分层,并从每个分层中随机选择2个样本,最后将结果打印输出。 **代码总结:** - 使用pandas库的groupby()和apply()函数实现了对总体数
corwn 最低0.47元/天 解锁专栏
买1年送3月
点击查看下一篇
profit 百万级 高质量VIP文章无限畅学
profit 千万级 优质资源任意下载
profit C知道 免费提问 ( 生成式Al产品 )

相关推荐

李_涛

知名公司架构师
拥有多年在大型科技公司的工作经验,曾在多个大厂担任技术主管和架构师一职。擅长设计和开发高效稳定的后端系统,熟练掌握多种后端开发语言和框架,包括Java、Python、Spring、Django等。精通关系型数据库和NoSQL数据库的设计和优化,能够有效地处理海量数据和复杂查询。
专栏简介
《Python数据清洗实战入门》是一本针对数据清洗领域的入门级专栏。本专栏包含多篇文章,对Python在数据清洗过程中常见的工具与技巧进行了详细介绍。文章涵盖了数据清洗的基础入门知识,如使用正则表达式进行数据清洗,以及数据的解析与提取、缺失值处理、重复值检测与处理等。此外,还介绍了数据的转换与格式化、合并与拆分、异常值检测与处理、数据去重与排序等技术。此外,还涉及到常见的数据透视与分组技术、数据合规性验证、数据抽样与采样、数据清洗流程与规范、数据匹配与整合、数据转换与映射、数据筛选与过滤、数据聚合与分割等。本专栏将帮助读者建立起数据清洗的基础知识和技能,为进一步的数据处理和分析奠定坚实的基础。
最低0.47元/天 解锁专栏
买1年送3月
百万级 高质量VIP文章无限畅学
千万级 优质资源任意下载
C知道 免费提问 ( 生成式Al产品 )

最新推荐

打印机维护必修课:彻底清除爱普生R230废墨,提升打印质量!

# 摘要 本文旨在详细介绍爱普生R230打印机废墨清除的过程,包括废墨产生的原因、废墨清除对打印质量的重要性以及废墨系统结构的原理。文章首先阐述了废墨清除的理论基础,解释了废墨产生的过程及其对打印效果的影响,并强调了及时清除废墨的必要性。随后,介绍了在废墨清除过程中需要准备的工具和材料,提供了详细的操作步骤和安全指南。最后,讨论了清除废墨时可能遇到的常见问题及相应的解决方案,并分享了一些提升打印质量的高级技巧和建议,为用户提供全面的废墨处理指导和打印质量提升方法。 # 关键字 废墨清除;打印质量;打印机维护;安全操作;颜色管理;打印纸选择 参考资源链接:[爱普生R230打印机废墨清零方法图

【大数据生态构建】:Talend与Hadoop的无缝集成指南

![Talend open studio 中文使用文档](https://help.talend.com/ja-JP/data-mapper-functions-reference-guide/8.0/Content/Resources/images/using_globalmap_variable_map_02_tloop.png) # 摘要 随着信息技术的迅速发展,大数据生态正变得日益复杂并受到广泛关注。本文首先概述了大数据生态的组成和Talend与Hadoop的基本知识。接着,深入探讨了Talend与Hadoop的集成原理,包括技术基础和连接器的应用。在实践案例分析中,本文展示了如何利

【Quectel-CM驱动优化】:彻底解决4G连接问题,提升网络体验

![【Quectel-CM驱动优化】:彻底解决4G连接问题,提升网络体验](https://images.squarespace-cdn.com/content/v1/6267c7fbad6356776aa08e6d/1710414613315-GHDZGMJSV5RK1L10U8WX/Screenshot+2024-02-27+at+16.21.47.png) # 摘要 本文详细介绍了Quectel-CM驱动在连接性问题分析和性能优化方面的工作。首先概述了Quectel-CM驱动的基本情况和连接问题,然后深入探讨了网络驱动性能优化的理论基础,包括网络协议栈工作原理和驱动架构解析。文章接着通

【Java代码审计效率工具箱】:静态分析工具的正确打开方式

![java代码审计常规思路和方法](https://resources.jetbrains.com/help/img/idea/2024.1/run_test_mvn.png) # 摘要 本文探讨了Java代码审计的重要性,并着重分析了静态代码分析的理论基础及其实践应用。首先,文章强调了静态代码分析在提高软件质量和安全性方面的作用,并介绍了其基本原理,包括词法分析、语法分析、数据流分析和控制流分析。其次,文章讨论了静态代码分析工具的选取、安装以及优化配置的实践过程,同时强调了在不同场景下,如开源项目和企业级代码审计中应用静态分析工具的策略。文章最后展望了静态代码分析工具的未来发展趋势,特别

深入理解K-means:提升聚类质量的算法参数优化秘籍

# 摘要 K-means算法作为数据挖掘和模式识别中的一种重要聚类技术,因其简单高效而广泛应用于多个领域。本文首先介绍了K-means算法的基础原理,然后深入探讨了参数选择和初始化方法对算法性能的影响。针对实践应用,本文提出了数据预处理、聚类过程优化以及结果评估的方法和技巧。文章继续探索了K-means算法的高级优化技术和高维数据聚类的挑战,并通过实际案例分析,展示了算法在不同领域的应用效果。最后,本文分析了K-means算法的性能,并讨论了优化策略和未来的发展方向,旨在提升算法在大数据环境下的适用性和效果。 # 关键字 K-means算法;参数选择;距离度量;数据预处理;聚类优化;性能调优

【GP脚本新手速成】:一步步打造高效GP Systems Scripting Language脚本

# 摘要 本文旨在全面介绍GP Systems Scripting Language,简称为GP脚本,这是一种专门为数据处理和系统管理设计的脚本语言。文章首先介绍了GP脚本的基本语法和结构,阐述了其元素组成、变量和数据类型、以及控制流语句。随后,文章深入探讨了GP脚本操作数据库的能力,包括连接、查询、结果集处理和事务管理。本文还涉及了函数定义、模块化编程的优势,以及GP脚本在数据处理、系统监控、日志分析、网络通信以及自动化备份和恢复方面的实践应用案例。此外,文章提供了高级脚本编程技术、性能优化、调试技巧,以及安全性实践。最后,针对GP脚本在项目开发中的应用,文中给出了项目需求分析、脚本开发、集

【降噪耳机设计全攻略】:从零到专家,打造完美音质与降噪效果的私密秘籍

![【降噪耳机设计全攻略】:从零到专家,打造完美音质与降噪效果的私密秘籍](https://img.36krcdn.com/hsossms/20230615/v2_cb4f11b6ce7042a890378cf9ab54adc7@000000_oswg67979oswg1080oswg540_img_000?x-oss-process=image/format,jpg/interlace,1) # 摘要 随着技术的不断进步和用户对高音质体验的需求增长,降噪耳机设计已成为一个重要的研究领域。本文首先概述了降噪耳机的设计要点,然后介绍了声学基础与噪声控制理论,阐述了声音的物理特性和噪声对听觉的影

【MIPI D-PHY调试与测试】:提升验证流程效率的终极指南

![【MIPI D-PHY调试与测试】:提升验证流程效率的终极指南](https://introspect.ca/wp-content/uploads/2023/08/SV5C-DPTX_transparent-background-1024x403.png) # 摘要 本文系统地介绍了MIPI D-PHY技术的基础知识、调试工具、测试设备及其配置,以及MIPI D-PHY协议的分析与测试。通过对调试流程和性能优化的详解,以及自动化测试框架的构建和测试案例的高级分析,本文旨在为开发者和测试工程师提供全面的指导。文章不仅深入探讨了信号完整性和误码率测试的重要性,还详细说明了调试过程中的问题诊断

SAP BASIS升级专家:平滑升级新系统的策略

![SAP BASIS升级专家:平滑升级新系统的策略](https://community.sap.com/legacyfs/online/storage/blog_attachments/2019/06/12-5.jpg) # 摘要 SAP BASIS升级是确保企业ERP系统稳定运行和功能适应性的重要环节。本文从平滑升级的理论基础出发,深入探讨了SAP BASIS升级的基本概念、目的和步骤,以及系统兼容性和业务连续性的关键因素。文中详细描述了升级前的准备、监控管理、功能模块升级、数据库迁移与优化等实践操作,并强调了系统测试、验证升级效果和性能调优的重要性。通过案例研究,本文分析了实际项目中