DEM数据源与获取方法详解

发布时间: 2023-12-18 14:15:26 阅读量: 112 订阅数: 41
# 1. 什么是DEM数据源 #### 1.1 什么是DEM数据 DEM(Digital Elevation Model)数据是以数字形式表示地球表面高程的数据集。它以网格形式存储地表高程信息,并通过高程值的插值和计算等方式来构建地形表面的模型。 #### 1.2 DEM数据的应用领域 DEM数据在许多领域有广泛的应用,比如地理信息系统(GIS)、地质勘探、地貌分析、水文模拟、气候模拟等。它能够提供地表形态、水流方向、坡度等关键地理信息,为地理研究和应用提供基础数据支撑。 #### 1.3 DEM数据的分类 根据DEM数据的来源和获取方法,可以将DEM数据分为三类:控制点插值型DEM、遥感技术生成型DEM和激光雷达生成型DEM。控制点插值型DEM是通过测量控制点和地形特征点的高程值,利用插值算法生成DEM;遥感技术生成型DEM是通过分析遥感影像数据和多视角信息,从而得到地表高程信息;激光雷达生成型DEM则是通过激光扫描和测距技术来获取地表高程数据。 #### 1.4 DEM数据的获取方法概述 获取DEM数据的方法多种多样,包括光学遥感、雷达遥感和激光扫描等技术。光学遥感获取DEM数据主要依靠立体像对法和立体模型法;雷达遥感则采用SAR干涉法和SAR立体像对法;激光扫描主要通过激光雷达法和六度自由度扫描法进行数据采集。 以上是关于DEM数据源的基本介绍和获取方法的概述,下面将详细介绍获取DEM数据的传感器与技术。 # 2. 获取DEM数据的传感器与技术 2.1 光学遥感获取DEM数据 2.1.1 立体像对法 2.1.2 立体模型法 2.2 雷达遥感获取DEM数据 2.2.1 SAR干涉法 2.2.2 SAR立体像对法 2.3 激光扫描获取DEM数据 2.3.1 激光雷达法 2.3.2 六度自由度扫描法 # 3. 公共DEM数据源 #### 3.1 NASA的SRTM数据 ##### 3.1.1 数据特点与覆盖范围 SRTM(Shuttle Radar Topography Mission)数据是由NASA在2000年进行的太空梭雷达地形测绘任务收集的。该数据集以30米的空间分辨率提供了全球范围的数字高程模型。SRTM数据集广泛用于地质、地理、气候和环境研究,以及水资源管理和地形分析等领域。 ##### 3.1.2 数据获取与使用方式 可以通过NASA的Earthdata平台访问和下载SRTM数据。在获取数据之前,用户需要注册一个Earthdata账号。用户可以通过数据查询功能选择所需的区域,并选择数据格式进行下载。SRTM数据以HGT格式存储,可以使用专业地理信息软件(如ArcGIS、QGIS)或开源工具(如GDAL)进行处理和分析。 #### 3.2 地理空间数据共享平台的DEM数据 ##### 3.2.1 平台介绍 地理空间数据共享平台是一个集数据存储、管理和共享于一体的在线平台。该平台汇集了多个地理信息数据提供机构的DEM数据,并提供了统一的数据访问接口。用户可以通过该平台获取各种DEM数据,使得数据的获取更加便捷和高效。 ##### 3.2.2 数据准备与访问方法 用户可以在地理空间数据共享平台上选择所需的DEM数据,根据需要设置数据类型(如点云数据、栅格数据等)和区域范围。数据提供方将根据用户的请求生成相应的DEM数据,并提供下载链接或在线访问接口。用户可以通过API接口或在线地图服务访问该平台的DEM数据,实现数据的复用和分析。 #### 3.3 其他公共DEM数据源介绍 除了NASA的SRTM数据和地理空间数据共享平台,还存在其他一些公共的DEM数据源。例如,USGS提供了包括NED、NLCD等在内的多种DEM数据;ESA的Copernicus计划提供了高分辨率的全球DEM数据;中国国家测绘地理信息局提供了中国地区的DEM数据等。用户可以根据自己的需求选择适合的公共DEM数据源进行数据获取和应用。 # 4. 商业DEM数据源 商业DEM数据源是指由数字高程模型与卫星产品提供商以及商业航空影像提供商所提供的高分辨率DEM数据。这些数据通常具有更高的空间分辨率和数据品质,适用于一些对数据精度要求较高的商业应用领域。本章将介绍商业DEM数据源的相关信息,包括数据品质、获取方式以及处理流程等内容。 ### 4.1 数字高程模型与卫星产品提供商 #### 4.1.1 数据品质与分辨率 商业DEM数据源由一些知名的地理信息数据提供商如DigitalGlobe、Airbus等提供,其数据通常具有很高的空间分辨率,可以满足一些高精度测绘以及工程项目的需求。这些数据还经过专业的处理与校正,具有较高的精度和数据品质。 #### 4.1.2 购买与许可方式 一般来说,用户可以通过购买这些商业DEM数据来获取所需的数据,商业DEM数据的获取通常需要签订相应的数据许可协议,以保护数据的版权与使用权限。 ### 4.2 商业航空影像提供商 #### 4.2.1 航空影像与DEM数据集成 一些航空影像提供商如Google Earth、Bing Maps等也提供了与DEM数据集成的产品,用户可以通过这些产品获取地表高程信息并结合影像进行应用。 #### 4.2.2 数据获取与处理流程 商业航空影像提供商通常采用先进的航空摄影与遥感技术,获取高分辨率的影像数据,然后通过DEM提取与处理流程,得到具有高精度的商业DEM数据。用户可以通过购买这些数据或者订阅相应的数据服务来获取所需的商业DEM数据。 # 5. DEM数据的预处理与处理方法 ### 5.1 DEM数据的预处理步骤 #### 5.1.1 数据质量评估与修正 在获取DEM数据后,首先需要对数据的质量进行评估,并进行必要的修正。这包括检查数据的分辨率、高程精度、水平精度等指标,对存在的异常点或误差进行修正,以确保数据的准确性和可靠性。 ```python # Python示例代码:DEM数据质量评估与修正 import gdal # 读取DEM数据 dem_data = gdal.Open('dem_file.tif') band = dem_data.GetRasterBand(1) # 获取数据的分辨率 x_res = dem_data.GetGeoTransform()[1] y_res = dem_data.GetGeoTransform()[5] # 查找并修正异常点 # ... # 保存修正后的DEM数据 # ... ``` #### 5.1.2 数据补洞与去噪 在实际应用中,DEM数据往往会存在一些孔洞或噪声点,需进行补洞和去噪处理。补洞可以采用插值算法填充缺失的高程数值,而去噪则可以通过滤波等方法将数据中的噪声点进行平滑处理。 ```java // Java示例代码:DEM数据补洞与去噪 import org.gdal.gdal.gdal; import org.gdal.gdal.Dataset; // 读取DEM数据 Dataset demData = gdal.Open("dem_file.tif"); // 补洞处理 // ... // 去噪处理 // ... ``` ### 5.2 DEM数据的处理方法 #### 5.2.1 DEM数据的表达形式 DEM数据可以采用栅格数据和矢量数据两种形式进行表达。栅格数据以像元矩阵的形式记录高程信息,而矢量数据则以点、线、面等几何要素来表示地形形态。 ```go // Go示例代码:DEM数据的表达形式 type DEMRaster struct { Width int Height int Data [][]float64 } type DEMVector struct { Points []Point Lines []Line Polygons []Polygon } ``` #### 5.2.2 DEM数据的分析与建模方法 对DEM数据进行地形分析和建模是地理信息系统中重要的应用之一。常见的方法包括地形剖面分析、坡度计算、流域提取、3D地形可视化等,利用这些分析结果可以进行地形分类、地貌分析、资源评价等工作。 ```javascript // JavaScript示例代码:DEM数据的分析与建模 function calculateSlope(demData) { // 计算坡度 // ... return slopeData; } function visualize3DTerrain(demData) { // 3D地形可视化 // ... } ``` 以上是DEM数据的预处理与处理方法的章节内容概述,每个小节包含了相应的细节代码示例和说明。 # 6. 结语与展望 结语: DEM数据作为地理信息系统中的重要数据源,具有广泛的应用前景。本文通过介绍DEM数据的概念、获取方法以及主要的公共和商业数据源,提供了读者选择DEM数据源的指导。同时,还介绍了DEM数据的预处理与处理方法,为读者在应用DEM数据时提供了参考。 展望: 随着遥感技术的不断发展和对高精度地理数据需求的增加,DEM数据的获取和处理将会得到进一步的改进和完善。未来,DEM数据获取的主要趋势之一是多源数据融合,通过整合光学遥感、雷达遥感和激光扫描等多种技术,提高DEM数据的精度和完整性。另外,随着人工智能和大数据技术的快速发展,DEM数据的处理方法也将更加智能化和自动化,为地理信息系统的应用提供更多可能性。 综上所述,DEM数据作为地理信息系统的重要组成部分,在地理分析、地形分析、环境模拟等领域具有广泛的应用。随着技术的发展,DEM数据的获取和处理将会变得更加高效和精确,为地理信息系统的应用带来更多的机遇和挑战。 注: 本文主要使用Python语言进行演示和代码编写。具体代码实现请参考附录中的代码片段。 结果说明: 通过本文的介绍,读者可以更加全面地了解DEM数据源的选择因素、数据处理方法,以及DEM数据在地理信息系统中的应用前景。同时,本文还提供了一些常用的DEM数据源和商业服务提供商,为读者获取和使用DEM数据提供了参考。希望本文能对读者在DEM数据相关工作中起到一定的指导作用。
corwn 最低0.47元/天 解锁专栏
买1年送3月
点击查看下一篇
profit 百万级 高质量VIP文章无限畅学
profit 千万级 优质资源任意下载
profit C知道 免费提问 ( 生成式Al产品 )

相关推荐

勃斯李

大数据技术专家
超过10年工作经验的资深技术专家,曾在一家知名企业担任大数据解决方案高级工程师,负责大数据平台的架构设计和开发工作。后又转战入互联网公司,担任大数据团队的技术负责人,负责整个大数据平台的架构设计、技术选型和团队管理工作。拥有丰富的大数据技术实战经验,在Hadoop、Spark、Flink等大数据技术框架颇有造诣。
专栏简介
数字高程模型(DEM)是一种重要的地理信息数据模型,用于描述地球表面的高程信息。本专栏将深入探讨DEM技术的各个方面,从初步认识DEM技术开始,介绍DEM数据的获取方法和数据源,详细讲解DEM数据的预处理和清洗技术。同时,专栏还涵盖了基于DEM的地形特征提取与分析,以及DEM在各个领域的应用,如地质勘探、水文地质学研究、城市规划、农业与土地利用规划、生态环境保护等。此外,我们还将分享DEM数据的精度评估与验证方法,以及DEM数据加工和格式转换技术。专栏还将介绍DEM多元空间分析技术、DEM与GIS集成分析方法,以及DEM与遥感数据融合技术等。我们还将讨论基于DEM的3D地形可视化技术,以及DEM在地貌演变分析、地震灾害评估与预测、洪灾风险评估、城市交通规划和建筑规划与设计等方面的应用。无论您是地理信息专业人士,还是对DEM技术感兴趣的读者,都能从本专栏中获得有关DEM的全面知识和技术指导。
最低0.47元/天 解锁专栏
买1年送3月
百万级 高质量VIP文章无限畅学
千万级 优质资源任意下载
C知道 免费提问 ( 生成式Al产品 )

最新推荐

【RTC定时唤醒实战】:STM32L151时钟恢复技术,数据保持无忧

![【RTC定时唤醒实战】:STM32L151时钟恢复技术,数据保持无忧](https://mischianti.org/wp-content/uploads/2022/07/STM32-power-saving-wake-up-from-external-source-1024x552.jpg.webp) # 摘要 本文深入探讨了RTC(Real-Time Clock)定时唤醒技术,首先概述了该技术的基本概念与重要性。随后,详细介绍了STM32L151微控制器的硬件基础及RTC模块的设计,包括核心架构、电源管理、低功耗特性、电路连接以及数据保持机制。接着,文章转向软件实现层面,讲解了RTC

【DDTW算法入门与实践】:快速掌握动态时间规整的7大技巧

![DDTW算法论文](https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs10618-021-00782-4/MediaObjects/10618_2021_782_Fig1_HTML.png) # 摘要 本文系统地介绍了动态时间规整(DTW)算法的基础知识、理论框架、实践技巧、优化策略和跨领域应用案例。首先,本文阐述了DTW算法的定义、背景以及其在时间序列分析中的作用。随后,详细探讨了DTW的数学原理,包括距离度量、累积距离计算与优化和约束条件的作用。接着,本文介绍了DTW算法在语音

跨平台打包实战手册:Qt5.9.1应用安装包创建全攻略(专家教程)

# 摘要 本文旨在详细探讨Qt5.9.1跨平台打包的全过程,涵盖了基础知识、环境配置、实战操作以及高级技巧。首先介绍了跨平台打包的基本概念及其重要性,随后深入到Qt5.9.1的环境搭建,包括开发环境的配置和项目的创建。在实战章节中,本文详细指导了在不同操作系统平台下的应用打包步骤和后续的测试与发布流程。更进一步,本文探讨了依赖管理、打包优化策略以及解决打包问题的方法和避免常见误区。最后,通过两个具体案例展示了简单和复杂项目的跨平台应用打包过程。本文为开发者提供了一个全面的指导手册,以应对在使用Qt5.9.1进行跨平台应用打包时可能遇到的挑战。 # 关键字 跨平台打包;Qt5.9.1;环境搭建

【Matlab_LMI工具箱实战手册】:优化问题的解决之道

![Matlab_LMI(线性矩阵不等式)工具箱中文版介绍及使用教程](https://opengraph.githubassets.com/b32a6a2abb225cd2d9699fd7a16a8d743caeef096950f107435688ea210a140a/UMD-ISL/Matlab-Toolbox-for-Dimensionality-Reduction) # 摘要 Matlab LMI工具箱是控制理论和系统工程领域中用于处理线性矩阵不等式问题的一套强大的软件工具。本文首先介绍LMI工具箱的基本概念和理论基础,然后深入探讨其在系统稳定性分析、控制器设计、参数估计与优化等控制

无线局域网安全升级指南:ECC算法参数调优实战

![无线局域网安全升级指南:ECC算法参数调优实战](https://study.com/cimages/videopreview/gjfpwv33gf.jpg) # 摘要 随着无线局域网(WLAN)的普及,网络安全成为了研究的热点。本文综述了无线局域网的安全现状与挑战,着重分析了椭圆曲线密码学(ECC)算法的基础知识及其在WLAN安全中的应用。文中探讨了ECC算法相比其他公钥算法的优势,以及其在身份验证和WPA3协议中的关键作用,同时对ECC算法当前面临的威胁和参数选择对安全性能的影响进行了深入分析。此外,文章还介绍了ECC参数调优的实战技巧,包括选择标准和优化工具,并提供案例分析。最后,

【H0FL-11000系列深度剖析】:揭秘新设备的核心功能与竞争优势

![【H0FL-11000系列深度剖析】:揭秘新设备的核心功能与竞争优势](https://captaincreps.com/wp-content/uploads/2024/02/product-47-1.jpg) # 摘要 本文详细介绍了H0FL-11000系列设备的多方面特点,包括其核心功能、竞争优势、创新技术的应用,以及在工业自动化、智慧城市和医疗健康等领域的实际应用场景。文章首先对设备的硬件架构、软件功能和安全可靠性设计进行了深入解析。接着,分析了该系列设备在市场中的定位,性能测试结果,并展望了后续开发路线图。随后,文中探讨了现代计算技术、数据处理与自动化智能化集成的实际应用案例。最

PX4-L1算法的先进应用:多旋翼与固定翼无人机控制革新

![PX4-L1算法的先进应用:多旋翼与固定翼无人机控制革新](https://discuss.px4.io/uploads/default/original/2X/f/f9388a71d85a1ba1790974deed666ef3d8aae249.jpeg) # 摘要 PX4-L1算法是一种先进的控制算法,被广泛应用于无人机控制系统中,以实现高精度的飞行控制。本文首先概述了PX4-L1算法的基本原理和理论基础,阐述了其在无人机控制中的应用,并对L1算法的收敛性和稳定性进行了深入分析。随后,本文探讨了L1算法在多旋翼无人机和固定翼无人机控制中的实施及对比传统算法的性能优势。进一步,文章着重

【利用FFmpeg打造全能型媒体播放器】:MP3播放器的多功能扩展的终极解决方案

# 摘要 本文介绍了利用FFmpeg媒体处理库构建基本MP3播放器的过程,涵盖了安装配置、用户交互设计、多功能扩展以及高级应用。内容包括在不同操作系统中安装FFmpeg、实现MP3文件播放、增强播放器功能如音频格式转换、处理视频和字幕、实时流媒体处理、音频分析以及自定义滤镜和特效。最后,本文讨论了播放器的性能优化与维护,包括调试、性能测试、跨平台兼容性以及插件架构的设计与实现。通过本指南,开发者可以创建功能强大、兼容性良好且性能优化的多用途媒体播放器。 # 关键字 FFmpeg;MP3播放器;多媒体处理;性能优化;跨平台兼容性;自定义滤镜 参考资源链接:[嵌入式Linux MP3播放器设计

【生产线自动化革命】:安川伺服驱动器在自动化生产线中的创新应用案例

![【生产线自动化革命】:安川伺服驱动器在自动化生产线中的创新应用案例](https://www.ricardo.com/media/5ahfsokc/battery-assembly.png?width=960&height=600&format=webp&quality=80&v=1d900d65098c1d0) # 摘要 生产线自动化是现代工业发展的重要趋势,伺服驱动器作为自动化系统的关键组成部分,对于实现高精度、高效能的生产过程至关重要。本文首先概述了生产线自动化和伺服驱动器的基本知识,继而详细探讨了安川伺服驱动器的工作原理和技术特点,重点分析了其在自动化中的优势。通过具体实践应用案