STM32开发板原理图中的时钟设计详解:4个关键步骤,实现高精度计时

发布时间: 2024-07-05 07:33:41 阅读量: 103 订阅数: 40
![stm32单片机开发板原理图](https://upload.42how.com/article/%E5%BE%AE%E4%BF%A1%E5%9B%BE%E7%89%87_20230320121236_20230320121333.png?x-oss-process=style/watermark) # 1. STM32开发板原理图时钟设计概述 时钟是嵌入式系统中不可或缺的一部分,它为系统中的各个组件提供同步信号,确保系统稳定可靠地运行。在STM32开发板的原理图设计中,时钟设计尤为重要,它直接影响着系统的性能、功耗和稳定性。 本章将对STM32开发板的时钟设计进行概述,包括时钟源的选取、时钟树的构建、时钟信号的输出和时钟设计的优化等方面。通过对这些内容的深入理解,可以帮助开发者设计出高效、可靠的STM32开发板。 # 2. 时钟源的选取与配置 ### 2.1 内部时钟源 STM32微控制器内置了多种内部时钟源,包括: #### 2.1.1 HSI时钟 HSI(内部高速时钟)是一种基于 RC 振荡器的内部时钟源,频率为 16 MHz。HSI 的优点是功耗低、成本低,缺点是精度较差,温度漂移较大。 ```c /* 使能 HSI 时钟 */ RCC->CR |= RCC_CR_HSION; /* 等待 HSI 时钟稳定 */ while ((RCC->CR & RCC_CR_HSIRDY) == 0); ``` #### 2.1.2 HSE 时钟 HSE(外部高速时钟)是一种基于外部晶振或陶瓷谐振器的外部时钟源。HSE 的频率范围为 4 MHz 至 25 MHz,精度比 HSI 高,温度漂移也较小。 ```c /* 使能 HSE 时钟 */ RCC->CR |= RCC_CR_HSEON; /* 等待 HSE 时钟稳定 */ while ((RCC->CR & RCC_CR_HSERDY) == 0); ``` #### 2.1.3 LSI 时钟 LSI(内部低速时钟)是一种基于 RC 振荡器的内部时钟源,频率为 32 kHz。LSI 的优点是功耗极低,缺点是精度非常差,温度漂移极大。 ```c /* 使能 LSI 时钟 */ RCC->CSR |= RCC_CSR_LSION; /* 等待 LSI 时钟稳定 */ while ((RCC->CSR & RCC_CSR_LSIRDY) == 0); ``` ### 2.2 外部时钟源 除了内部时钟源,STM32 微控制器还支持多种外部时钟源,包括: #### 2.2.1 晶振时钟 晶振时钟是一种基于石英晶体的外部时钟源,频率范围很广,精度极高,温度漂移极小。晶振时钟的缺点是成本较高,功耗也较高。 ```c /* 配置晶振时钟 */ RCC->CFGR |= RCC_CFGR_HSEBYP; /* 旁路 HSE 晶振 */ RCC->CFGR |= RCC_CFGR_HSEON; /* 使能 HSE 时钟 */ /* 等待 HSE 时钟稳定 */ while ((RCC->CR & RCC_CR_HSERDY) == 0); ``` #### 2.2.2 RTC 时钟 RTC 时钟是一种基于外部 32.768 kHz 晶体的时钟源,用于时钟和日历功能。RTC 时钟的优点是精度高、温度漂移小,缺点是功耗较高。 ```c /* 配置 RTC 时钟 */ RCC->BDCR |= RCC_BDCR_RTCEN; /* 使能 RTC 时钟 */ RCC->BDCR |= RCC_BDCR_BDRST; /* 复位 RTC */ /* 等待 RTC 时钟稳定 */ while ((RCC->BDCR & RCC_BDCR_RTCEN) == 0); ``` ### 时钟源选择 时钟源的选择取决于具体的应用需求。如果需要高精度、低漂移的时钟,则应选择晶振时钟或 RTC 时钟。如果需要低功耗、低成本的时钟,则应选择 HSI 时钟或 LSI 时钟。 # 3.1 PLL倍频器 #### 3.1.1 PLL倍频原理 PLL(Phase-Locked Loop,锁相环)是一种电子电路,它可以将一个输入时钟信号倍频输出一个新的时钟信号。PL
corwn 最低0.47元/天 解锁专栏
买1年送3月
点击查看下一篇
profit 百万级 高质量VIP文章无限畅学
profit 千万级 优质资源任意下载
profit C知道 免费提问 ( 生成式Al产品 )

相关推荐

Big黄勇

硬件工程师
广州大学计算机硕士,硬件开发资深技术专家,拥有超过10多年的工作经验。曾就职于全球知名的大型科技公司,担任硬件工程师一职。任职期间负责产品的整体架构设计、电路设计、原型制作和测试验证工作。对硬件开发领域有着深入的理解和独到的见解。
专栏简介
本专栏深入探讨了 STM32 单片机开发板原理图设计,涵盖了从入门到精通的全面知识。专栏包含 20 多篇文章,涵盖了 10 大优化策略、7 个设计步骤、10 个常见问题及解决方案、5 个关键优化点、3 大电源设计原则、4 个时钟设计步骤、6 种常用 I/O 接口、4 大通信总线协议、3 种存储类型、5 个常用外设、4 种仿真与验证方法、5 个电磁兼容性设计关键点、10 个常见故障排除问题、5 个前沿技术应用、3 大发展趋势、10 条最佳实践、7 个性能优化指标和 5 种低功耗设计策略。通过阅读本专栏,读者可以全面掌握 STM32 开发板原理图设计知识,提升系统性能、可靠性和效率。

专栏目录

最低0.47元/天 解锁专栏
买1年送3月
百万级 高质量VIP文章无限畅学
千万级 优质资源任意下载
C知道 免费提问 ( 生成式Al产品 )

最新推荐

【特征工程稀缺技巧】:标签平滑与标签编码的比较及选择指南

# 1. 特征工程简介 ## 1.1 特征工程的基本概念 特征工程是机器学习中一个核心的步骤,它涉及从原始数据中选取、构造或转换出有助于模型学习的特征。优秀的特征工程能够显著提升模型性能,降低过拟合风险,并有助于在有限的数据集上提炼出有意义的信号。 ## 1.2 特征工程的重要性 在数据驱动的机器学习项目中,特征工程的重要性仅次于数据收集。数据预处理、特征选择、特征转换等环节都直接影响模型训练的效率和效果。特征工程通过提高特征与目标变量的关联性来提升模型的预测准确性。 ## 1.3 特征工程的工作流程 特征工程通常包括以下步骤: - 数据探索与分析,理解数据的分布和特征间的关系。 - 特

【特征选择工具箱】:R语言中的特征选择库全面解析

![【特征选择工具箱】:R语言中的特征选择库全面解析](https://media.springernature.com/lw1200/springer-static/image/art%3A10.1186%2Fs12859-019-2754-0/MediaObjects/12859_2019_2754_Fig1_HTML.png) # 1. 特征选择在机器学习中的重要性 在机器学习和数据分析的实践中,数据集往往包含大量的特征,而这些特征对于最终模型的性能有着直接的影响。特征选择就是从原始特征中挑选出最有用的特征,以提升模型的预测能力和可解释性,同时减少计算资源的消耗。特征选择不仅能够帮助我

p值在机器学习中的角色:理论与实践的结合

![p值在机器学习中的角色:理论与实践的结合](https://itb.biologie.hu-berlin.de/~bharath/post/2019-09-13-should-p-values-after-model-selection-be-multiple-testing-corrected_files/figure-html/corrected pvalues-1.png) # 1. p值在统计假设检验中的作用 ## 1.1 统计假设检验简介 统计假设检验是数据分析中的核心概念之一,旨在通过观察数据来评估关于总体参数的假设是否成立。在假设检验中,p值扮演着决定性的角色。p值是指在原

【时间序列分析】:如何在金融数据中提取关键特征以提升预测准确性

![【时间序列分析】:如何在金融数据中提取关键特征以提升预测准确性](https://img-blog.csdnimg.cn/20190110103854677.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3dlaXhpbl8zNjY4ODUxOQ==,size_16,color_FFFFFF,t_70) # 1. 时间序列分析基础 在数据分析和金融预测中,时间序列分析是一种关键的工具。时间序列是按时间顺序排列的数据点,可以反映出某

【复杂数据的置信区间工具】:计算与解读的实用技巧

# 1. 置信区间的概念和意义 置信区间是统计学中一个核心概念,它代表着在一定置信水平下,参数可能存在的区间范围。它是估计总体参数的一种方式,通过样本来推断总体,从而允许在统计推断中存在一定的不确定性。理解置信区间的概念和意义,可以帮助我们更好地进行数据解释、预测和决策,从而在科研、市场调研、实验分析等多个领域发挥作用。在本章中,我们将深入探讨置信区间的定义、其在现实世界中的重要性以及如何合理地解释置信区间。我们将逐步揭开这个统计学概念的神秘面纱,为后续章节中具体计算方法和实际应用打下坚实的理论基础。 # 2. 置信区间的计算方法 ## 2.1 置信区间的理论基础 ### 2.1.1

自然语言处理中的独热编码:应用技巧与优化方法

![自然语言处理中的独热编码:应用技巧与优化方法](https://img-blog.csdnimg.cn/5fcf34f3ca4b4a1a8d2b3219dbb16916.png) # 1. 自然语言处理与独热编码概述 自然语言处理(NLP)是计算机科学与人工智能领域中的一个关键分支,它让计算机能够理解、解释和操作人类语言。为了将自然语言数据有效转换为机器可处理的形式,独热编码(One-Hot Encoding)成为一种广泛应用的技术。 ## 1.1 NLP中的数据表示 在NLP中,数据通常是以文本形式出现的。为了将这些文本数据转换为适合机器学习模型的格式,我们需要将单词、短语或句子等元

训练集大小对性能的影响:模型评估的10大策略

![训练集大小对性能的影响:模型评估的10大策略](https://community.alteryx.com/t5/image/serverpage/image-id/71553i43D85DE352069CB9?v=v2) # 1. 模型评估的基础知识 在机器学习与数据科学领域中,模型评估是验证和比较机器学习算法表现的核心环节。本章节将从基础层面介绍模型评估的基本概念和重要性。我们将探讨为什么需要评估模型、评估模型的目的以及如何选择合适的评估指标。 ## 1.1 评估的重要性 模型评估是为了确定模型对未知数据的预测准确性与可靠性。一个训练好的模型,只有在独立的数据集上表现良好,才能够

大样本理论在假设检验中的应用:中心极限定理的力量与实践

![大样本理论在假设检验中的应用:中心极限定理的力量与实践](https://images.saymedia-content.com/.image/t_share/MTc0NjQ2Mjc1Mjg5OTE2Nzk0/what-is-percentile-rank-how-is-percentile-different-from-percentage.jpg) # 1. 中心极限定理的理论基础 ## 1.1 概率论的开篇 概率论是数学的一个分支,它研究随机事件及其发生的可能性。中心极限定理是概率论中最重要的定理之一,它描述了在一定条件下,大量独立随机变量之和(或平均值)的分布趋向于正态分布的性

【交互特征的影响】:分类问题中的深入探讨,如何正确应用交互特征

![【交互特征的影响】:分类问题中的深入探讨,如何正确应用交互特征](https://img-blog.csdnimg.cn/img_convert/21b6bb90fa40d2020de35150fc359908.png) # 1. 交互特征在分类问题中的重要性 在当今的机器学习领域,分类问题一直占据着核心地位。理解并有效利用数据中的交互特征对于提高分类模型的性能至关重要。本章将介绍交互特征在分类问题中的基础重要性,以及为什么它们在现代数据科学中变得越来越不可或缺。 ## 1.1 交互特征在模型性能中的作用 交互特征能够捕捉到数据中的非线性关系,这对于模型理解和预测复杂模式至关重要。例如

【PCA算法优化】:减少计算复杂度,提升处理速度的关键技术

![【PCA算法优化】:减少计算复杂度,提升处理速度的关键技术](https://user-images.githubusercontent.com/25688193/30474295-2bcd4b90-9a3e-11e7-852a-2e9ffab3c1cc.png) # 1. PCA算法简介及原理 ## 1.1 PCA算法定义 主成分分析(PCA)是一种数学技术,它使用正交变换来将一组可能相关的变量转换成一组线性不相关的变量,这些新变量被称为主成分。 ## 1.2 应用场景概述 PCA广泛应用于图像处理、降维、模式识别和数据压缩等领域。它通过减少数据的维度,帮助去除冗余信息,同时尽可能保

专栏目录

最低0.47元/天 解锁专栏
买1年送3月
百万级 高质量VIP文章无限畅学
千万级 优质资源任意下载
C知道 免费提问 ( 生成式Al产品 )