Linux下OpenCV图像处理:图像压缩与解压,节省空间不失真

发布时间: 2024-08-07 17:38:34 阅读量: 22 订阅数: 13
![linux opencv使用](https://res.cloudinary.com/monday-blogs/w_1024,h_563,c_fit/fl_lossy,f_auto,q_auto/wp-blog/2024/02/monday-wm-project-management.jpg) # 1. OpenCV简介及图像处理基础 OpenCV(Open Source Computer Vision Library)是一个开源的计算机视觉库,广泛应用于图像处理、计算机视觉和机器学习等领域。它提供了丰富的图像处理函数,包括图像读取、写入、转换、滤波、形态学操作等。 图像处理是指对图像进行各种操作以增强其视觉效果或提取有用信息。常见的图像处理任务包括: - 图像读取和写入:使用`imread()`和`imwrite()`函数读取和写入图像。 - 图像转换:将图像从一种格式转换为另一种格式,例如从RGB转换为灰度。 - 图像滤波:使用卷积核对图像进行滤波,例如高斯滤波器或中值滤波器。 - 形态学操作:对图像进行形态学操作,例如腐蚀、膨胀和开运算。 # 2. 图像压缩理论与实践 ### 2.1 图像压缩原理和算法 图像压缩是一种通过减少图像文件大小来节省存储空间和传输带宽的技术。它通过去除图像中冗余的信息来实现,而不会显著影响其视觉质量。 **2.1.1 无损压缩算法** 无损压缩算法在压缩图像时不会丢失任何信息。它们通过以下技术来减少文件大小: - **熵编码:**将图像数据编码为可变长度代码,其中更常见的符号使用更短的代码。 - **无损预测:**预测图像中每个像素的值,并仅存储预测误差。 - **字典编码:**将重复出现的像素序列替换为较短的代码。 常见的无损压缩算法包括: - **LZW (Lempel-Ziv-Welch):**一种基于字典的算法,广泛用于 GIF 和 TIFF 图像格式。 - **PNG (Portable Network Graphics):**一种无损格式,支持透明度和 24 位颜色深度。 - **BMP (Bitmap):**一种未压缩的格式,用于存储原始图像数据。 ### 2.1.2 有损压缩算法 有损压缩算法在压缩图像时会丢失一些信息,从而产生更小的文件大小。它们通过以下技术实现: - **色度抽样:**减少图像中颜色的数量,从而减少文件大小。 - **量化:**将图像像素值舍入到较小的值,从而减少数据范围。 - **DCT (离散余弦变换):**将图像分解为一系列正弦波,从而去除冗余。 常见的有损压缩算法包括: - **JPEG (Joint Photographic Experts Group):**一种广泛用于数码相机和 Web 图像的格式,支持 24 位颜色深度。 - **MPEG (Motion Picture Experts Group):**一种用于视频压缩的格式,支持帧间预测和运动补偿。 - **WebP:**一种由 Google 开发的格式,结合了 JPEG 和 PNG 的优点,提供无损和有损压缩选项。 ### 2.2 OpenCV中的图像压缩函数 OpenCV 提供了以下函数用于图像压缩: #### 2.2.1 imwrite()函数 `imwrite()` 函数将图像写入指定的文件中,并根据提供的参数进行压缩。 **语法:** ```cpp bool imwrite(const string& filename, InputArray img, const vector<int>& params = vector<int>()) ``` **参数:** - `filename`:输出图像文件的路径。 - `img`:要写入的图像。 - `params`:可选的压缩参数,具体取决于所使用的压缩算法。 **代码块:** ```cpp // 无损压缩 PNG 图像 imwrite("image.png", img, {IMWRITE_PNG_COMPRESSION, 9}); // 有损压缩 JPEG 图像 imwrite("image.jpg", img, {IMWRITE_JPEG_QUALITY, 90}); ``` **逻辑分析:** * 第一行使用 PNG 压缩算法以 9 级压缩质量(0-9,9 为最高)将
corwn 最低0.47元/天 解锁专栏
送3个月
profit 百万级 高质量VIP文章无限畅学
profit 千万级 优质资源任意下载
profit C知道 免费提问 ( 生成式Al产品 )

相关推荐

张_伟_杰

人工智能专家
人工智能和大数据领域有超过10年的工作经验,拥有深厚的技术功底,曾先后就职于多家知名科技公司。职业生涯中,曾担任人工智能工程师和数据科学家,负责开发和优化各种人工智能和大数据应用。在人工智能算法和技术,包括机器学习、深度学习、自然语言处理等领域有一定的研究
专栏简介
本专栏以“Linux 下 OpenCV 图像处理”为主题,从入门到精通,涵盖了图像处理的方方面面。专栏内容丰富,包括: * 从零基础到大师级的 10 步入门指南 * 5 大性能优化绝招 * 解决常见问题的实用技巧 * 深度学习实战,解锁人工智能新境界 * 底层原理大揭秘,掌握核心技术 * 多线程并行,极速提升效率 * 工业应用案例分析,实战经验分享 * 图像分割与目标检测,精准识别无压力 * 图像增强与修复,让图像焕发新生 * 移动端优化实践,小屏也能大显身手 * 图像识别与分类,让计算机识物更精准 * 图像生成与合成,创造无限可能 * 图像分析与量化,数据说话更客观 * 视频处理从基础到高级,让视频动起来 * 图像配准与拼接,拼出全景无死角 * 图像变形与透视变换,玩转图像几何 * 图像压缩与解压,节省空间不失真 通过阅读本专栏,读者将全面掌握 Linux 下 OpenCV 图像处理技术,并能将其应用于实际项目中。
最低0.47元/天 解锁专栏
送3个月
百万级 高质量VIP文章无限畅学
千万级 优质资源任意下载
C知道 免费提问 ( 生成式Al产品 )

最新推荐

Styling Scrollbars in Qt Style Sheets: Detailed Examples on Beautifying Scrollbar Appearance with QSS

# Chapter 1: Fundamentals of Scrollbar Beautification with Qt Style Sheets ## 1.1 The Importance of Scrollbars in Qt Interface Design As a frequently used interactive element in Qt interface design, scrollbars play a crucial role in displaying a vast amount of information within limited space. In

Technical Guide to Building Enterprise-level Document Management System using kkfileview

# 1.1 kkfileview Technical Overview kkfileview is a technology designed for file previewing and management, offering rapid and convenient document browsing capabilities. Its standout feature is the support for online previews of various file formats, such as Word, Excel, PDF, and more—allowing user

Expert Tips and Secrets for Reading Excel Data in MATLAB: Boost Your Data Handling Skills

# MATLAB Reading Excel Data: Expert Tips and Tricks to Elevate Your Data Handling Skills ## 1. The Theoretical Foundations of MATLAB Reading Excel Data MATLAB offers a variety of functions and methods to read Excel data, including readtable, importdata, and xlsread. These functions allow users to

Statistical Tests for Model Evaluation: Using Hypothesis Testing to Compare Models

# Basic Concepts of Model Evaluation and Hypothesis Testing ## 1.1 The Importance of Model Evaluation In the fields of data science and machine learning, model evaluation is a critical step to ensure the predictive performance of a model. Model evaluation involves not only the production of accura

PyCharm Python Version Management and Version Control: Integrated Strategies for Version Management and Control

# Overview of Version Management and Version Control Version management and version control are crucial practices in software development, allowing developers to track code changes, collaborate, and maintain the integrity of the codebase. Version management systems (like Git and Mercurial) provide

Image Processing and Computer Vision Techniques in Jupyter Notebook

# Image Processing and Computer Vision Techniques in Jupyter Notebook ## Chapter 1: Introduction to Jupyter Notebook ### 2.1 What is Jupyter Notebook Jupyter Notebook is an interactive computing environment that supports code execution, text writing, and image display. Its main features include: -

Installing and Optimizing Performance of NumPy: Optimizing Post-installation Performance of NumPy

# 1. Introduction to NumPy NumPy, short for Numerical Python, is a Python library used for scientific computing. It offers a powerful N-dimensional array object, along with efficient functions for array operations. NumPy is widely used in data science, machine learning, image processing, and scient

Analyzing Trends in Date Data from Excel Using MATLAB

# Introduction ## 1.1 Foreword In the current era of information explosion, vast amounts of data are continuously generated and recorded. Date data, as a significant part of this, captures the changes in temporal information. By analyzing date data and performing trend analysis, we can better under

[Frontier Developments]: GAN's Latest Breakthroughs in Deepfake Domain: Understanding Future AI Trends

# 1. Introduction to Deepfakes and GANs ## 1.1 Definition and History of Deepfakes Deepfakes, a portmanteau of "deep learning" and "fake", are technologically-altered images, audio, and videos that are lifelike thanks to the power of deep learning, particularly Generative Adversarial Networks (GANs

Parallelization Techniques for Matlab Autocorrelation Function: Enhancing Efficiency in Big Data Analysis

# 1. Introduction to Matlab Autocorrelation Function The autocorrelation function is a vital analytical tool in time-domain signal processing, capable of measuring the similarity of a signal with itself at varying time lags. In Matlab, the autocorrelation function can be calculated using the `xcorr
最低0.47元/天 解锁专栏
送3个月
百万级 高质量VIP文章无限畅学
千万级 优质资源任意下载
C知道 免费提问 ( 生成式Al产品 )