Linux容器编排与Kubernetes实践

发布时间: 2023-12-19 02:54:59 阅读量: 37 订阅数: 40
# 1. 简介 ## 1.1 什么是Linux容器编排 在传统的应用部署中,往往需要手动对服务器进行配置、安装和管理,这样的方式对于大规模应用部署来说非常繁琐且容易出错。而Linux容器编排技术的出现,使得应用的部署和管理变得更加灵活、高效和可靠。 Linux容器编排是一种自动化部署和管理容器化应用的技术。它使用了容器化技术,将应用和其所需的依赖软件打包成一个独立的容器,然后通过容器编排工具将这些容器部署到集群中的多个节点上,并进行管理、监控和扩展。 ## 1.2 为什么需要Kubernetes 随着应用规模的增加,传统的手动管理方式已经无法满足需求,开发人员和运维人员需要一种更加自动化、可靠和可扩展的容器编排平台。Kubernetes就是这样一个开源的容器编排平台。 Kubernetes提供了一个强大的容器编排框架,它可以自动对容器进行调度、扩展和修复,支持多节点集群的高可用性和可扩展性。通过Kubernetes,我们可以更加高效地管理和部署应用,提高开发和运维的效率。 ## 1.3 Kubernetes的基本概念介绍 在学习和使用Kubernetes之前,我们需要了解一些基本的概念和术语。 - Pod(容器组):Pod是Kubernetes中最小的部署单元,它可以包含一个或多个相关的容器,共享相同的网络和存储资源。Pod提供了容器之间的通信和数据共享能力。 - Service(服务):Service是一组Pod的抽象,它定义了访问这些Pod的统一入口。Service可以提供负载均衡、服务发现和动态路由等功能。 - ReplicaSet(副本集):ReplicaSet是用来管理Pod副本数量的控制器。它可以根据指定的副本数目自动调整Pod的数量,以保证应用的可用性和性能。 - Deployment(部署):Deployment是ReplicaSet的上层抽象,用来管理应用的部署和更新。通过Deployment,我们可以定义应用的期望状态,Kubernetes将根据实际状态和期望状态进行调整。 - Namespace(命名空间):Namespace是用来划分不同团队或项目的资源和权限的虚拟集群。通过Namespace,我们可以将不同的资源隔离开来,避免冲突和混乱。 - Master节点和Worker节点:Kubernetes集群由Master节点和Worker节点组成,Master节点负责集群的管理和调度,Worker节点负责运行应用的容器。 以上是Kubernetes的一些基本概念介绍,接下来我们将详细介绍如何安装和配置Kubernetes集群。 # 2. 安装和配置Kubernetes 在使用Kubernetes之前,我们需要先进行安装和配置。这一章节将介绍如何安装Docker,安装Kubernetes集群,并进行必要的网络配置。 ### 2.1 安装Docker Docker是Kubernetes所依赖的容器运行时环境,因此我们需要先安装Docker。 ```bash # 添加Docker的软件源 $ sudo apt-get update $ sudo apt-get install apt-transport-https ca-certificates curl software-properties-common $ curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo apt-key add - $ sudo add-apt-repository "deb [arch=amd64] https://download.docker.com/linux/ubuntu $(lsb_release -cs) stable" # 安装Docker $ sudo apt-get update $ sudo apt-get install docker-ce docker-ce-cli containerd.io # 验证Docker是否安装成功 $ sudo docker run hello-world ``` 安装完成后,可以通过运行`sudo docker run hello-world`命令来验证Docker是否成功安装。如果看到输出中有"Hello from Docker!"的字样,则说明安装成功。 ### 2.2 安装Kubernetes集群 接下来,我们将安装Kubernetes集群。这里以使用kubeadm来安装为例。 ```bash # 安装kubeadm、kubelet和kubectl $ sudo apt-get update $ sudo apt-get install -y apt-transport-https curl $ curl -s https://packages.cloud.google.com/apt/doc/apt-key.gpg | sudo apt-key add - $ sudo apt-add-repository "deb http://apt.kubernetes.io/ kubernetes-xenial main" $ sudo apt-get update $ sudo apt-get install -y kubelet kubeadm kubectl # 初始化Kubernetes Master节点 $ sudo kubeadm init # 完成初始化后,根据控制台输出的提示,将以下命令添加到普通用户的配置文件中 $ mkdir -p $HOME/.kube $ sudo cp -i /etc/kubernetes/admin.conf $HOME/.kube/config $ sudo chown $(id -u):$(id -g) $HOME/.kube/config # 部署Pod网络插件 $ kubectl apply -f https://docs.projectcalico.org/v3.18/manifests/calico.yaml ``` 上述步骤中,我们首先安装了kubeadm、kubelet和kubectl工具,然后通过执行`sudo kubeadm init`命令初始化了Kubernetes Master节点,并将相关配置添加到普通用户的配置文件中。最后,我们通过执行`kubectl apply -f`命令来部署Pod网络插件,这里使用的是Calico插件。 ### 2.3 配置Kubernetes集群网络 Kubernetes集群的网络配置是非常重要的一步。在使用Calico插件之后,我们可以通过以下步骤来进行网络配置。 首先,检查集群网络是否正常运行,执行以下命令: ```bash $ kubectl get pods --all-namespaces ``` 如果所有的Pod都处于`Running`状态,则说明网络正常运行。 然后,为集群节点添加网络标记,执行以下命令: ```bash $ kubectl taint nodes --all node-role.kubernetes.io/master- ``` 最后,我们可以通过执行以下命令来查看集群的状态: ```bash $ kubectl cluster-info ``` 至此,我们已经完成了Kubernetes的安装和配置。接下来,我们可以开始使用Kubernetes进行容器编排了。 # 3. 使用Kubernetes进行容器编排 容器编排是指对容器化应用进行自动化部署、伸缩和运维的过程,Kubernetes作为容器编排领域的瑞士军刀,提供了丰富的功能和强大的生态系统,下面将介绍如何使用Kubernetes进行容器编排。 #### 3.1 创建和管理容器 在Kubernetes中,可以使用Deployment来创建和管理容器。下面是一个简单的Deployment配置文件示例,用于创建一个Nginx容器: ```yaml apiVersion: apps/v1 kind: Deployment metadata: name: nginx-deployment spec: replicas: 3 selector: matchLabels: app: nginx template: metadata: labels: app: nginx spec: containers: - name: nginx image: nginx:latest ports: - containerPort: 80 ``` 通过`kubectl apply -f nginx-deployment.yaml`可以使用该配置文件创建一个包含3个Nginx容器的Deployment。 #### 3.2 容器间通信与负载均衡 Kubernetes使用Service来实现容器间的通信和负载均衡。下面是一个Service配置文件示例,用于将Nginx容器暴露出去并进行负载均衡: ```yaml apiVersion: v1 kind: Service metadata: name: nginx-service spec: selector: app: nginx ports: - protocol: TCP port: 80 targetPort: 80 type: LoadBalancer ``` 通过`kubectl apply -f nginx-service.yaml`可以创建一个负载均衡的Service,将Nginx容器暴露在集群外部。 #### 3.3 使用标签和选择器进行容器管理 在Kubernetes中,可以给Pod、Deployment等资源添加标签,然后通过标签选择器来对这些资源进行管理。例如,可以通过以下命令找到拥有特定标签的Pod: ```shell kubectl get pods --selector env=production ``` 通过这种方式,可以方便地对不同环境或用途的容器进行管理和操作。 #### 3.4 自动扩展与自动修复容器 Kubernetes提供了Horizontal Pod Autoscaler(HPA)来实现根据资源利用率自动扩展容器数量。同时,通过Pod的健康检查和故障转移机制,Kubernetes可以实现容器的自动修复,提高应用的可用性和稳定性。 以上是使用Kubernetes进行容器编排的基本操作,通过这些功能,可以轻松地创建、管理和运维容器化应用。 # 4. Kubernetes集群的高可用性和可扩展性 在本章中,我们将深入探讨如何配置Kubernetes集群以实现高可用性和可扩展性。我们将介绍如何配置多节点集群、实现Master节点的高可用性,以及讨论集群的水平扩展和纵向扩展。 #### 4.1 多节点集群配置 在配置Kubernetes集群时,通常会包含多个节点,包括Master节点和Worker节点。在多节点集群中,Master节点用于集群管理和控制,而Worker节点负责运行应用容器。我们将介绍如何配置多节点集群以支持高可用和可扩展性。 #### 4.2 Master节点的高可用性 Master节点的高可用性是保证集群正常运行的关键。我们将介绍如何配置Master节点的高可用性,包括使用Kubernetes高可用组件和实现Master节点的故障切换。 #### 4.3 集群的水平扩展和纵向扩展 为了实现集群的可扩展性,我们将讨论如何进行集群的水平扩展和纵向扩展。水平扩展涉及添加更多的Worker节点以处理更多的应用负载,而纵向扩展涉及增加Master节点的资源以处理更多的集群管理任务。 在接下来的内容中,我们将详细介绍每个主题,并提供相关的配置和实施步骤,以帮助您理解如何配置高可用和可扩展的Kubernetes集群。 以上是第四章的内容,接下来会深入讨论多节点集群配置、Master节点的高可用性以及集群的扩展能力。 # 5. Kubernetes的监控和日志 在使用Kubernetes进行容器编排的过程中,监控集群资源利用率和容器的监控和日志收集是非常重要的。Kubernetes提供了一些工具和机制来实现这些功能。本章将介绍如何监控集群资源利用率、容器的监控和日志收集,并介绍如何使用Prometheus进行指标监控和告警。 #### 5.1 监控集群资源利用率 在使用Kubernetes管理容器时,我们通常需要监控集群的资源利用率,以便及时做出调整。Kubernetes提供了一些内置的监控工具,如Heapster和Metrics Server,可以实时获取集群节点和容器的资源利用率信息。 以下是通过Metrics Server获取集群资源利用率的示例代码(使用Python语言): ```python import requests def get_cluster_usage(): url = "http://<metrics_server_ip>/apis/metrics.k8s.io/v1beta1/nodes" response = requests.get(url) data = response.json() for node in data["items"]: name = node["metadata"]["name"] cpu_usage = node["usage"]["cpu"] memory_usage = node["usage"]["memory"] print("Node: {}, CPU Usage: {}, Memory Usage: {}".format(name, cpu_usage, memory_usage)) get_cluster_usage() ``` 代码解析和结果说明:以上代码通过HTTP请求访问Metrics Server的API,获取集群节点的资源利用率,并输出到控制台。通过解析JSON格式的响应数据,可以获取节点的名称、CPU利用率和内存利用率。可以根据实际情况将这些数据存储到数据库或展示在可视化监控工具中。 #### 5.2 集群中容器的监控和日志收集 除了监控集群的资源利用率,我们还需要监控容器的运行状态和日志输出,以便及时发现和排查问题。Kubernetes提供了一些机制来收集容器的监控数据和日志。 其中,kubelet组件负责收集和发送容器的监控数据。我们可以通过访问kubelet的API来获取容器的运行状态、CPU和内存使用情况等信息。以下是通过kubelet API获取容器监控数据的示例代码(使用Java语言): ```java import io.kubernetes.client.ApiClient; import io.kubernetes.client.ApiException; import io.kubernetes.client.PodLogs; import io.kubernetes.client.apis.CoreV1Api; import io.kubernetes.client.models.V1Pod; import io.kubernetes.client.util.Config; public class ContainerMonitor { public static void main(String[] args) throws ApiException { // 创建ApiClient对象,连接Kubernetes API Server ApiClient client = Config.defaultClient(); // 创建CoreV1Api对象,用于获取容器和Pod信息 CoreV1Api api = new CoreV1Api(client); // 获取所有Pod信息 V1PodList podList = api.listPodForAllNamespaces(null, null, null, null, null, null, null, null, null); for (V1Pod pod : podList.getItems()) { String podName = pod.getMetadata().getName(); String namespace = pod.getMetadata().getNamespace(); // 获取Pod的容器日志 PodLogs logs = new PodLogs(); String containerLogs = logs.getLogs(api, podName, namespace); System.out.println("Pod: " + podName); System.out.println("Container Logs: " + containerLogs); } } } ``` 代码解析和结果说明:以上代码使用Kubernetes Java客户端库,通过访问Kubernetes API Server获取所有Pod的信息,并输出容器的日志信息。可以根据实际需求对日志进行进一步的处理和分析。 #### 5.3 使用Prometheus进行指标监控和告警 除了使用内置的监控工具外,我们还可以使用第三方工具来实现更复杂的监控需求。Prometheus是一款流行的开源监控系统,支持多维度的指标监控和告警。 首先,需要在Kubernetes集群中部署Prometheus Server和Prometheus Node Exporter。Prometheus Server负责收集和存储监控数据,而Prometheus Node Exporter则负责收集节点和容器的资源利用率信息。 以下是使用Prometheus和Prometheus Node Exporter进行指标监控和告警的示例配置文件: ```yaml # prometheus.yml scrape_configs: - job_name: 'kubernetes-nodes' kubernetes_sd_configs: - role: node relabel_configs: - source_labels: [__meta_kubernetes_node_label_kubernetes_io_hostname] target_label: instance - source_labels: [__address__] target_label: __address__ replacement: 'prometheus-node-exporter:9100' ``` 代码解析和结果说明:以上配置文件定义了一个名为"kubernetes-nodes"的监控任务,通过Kubernetes SD配置从Kubernetes集群中获取节点信息,通过Prometheus Node Exporter暴露的指标接口收集节点和容器的资源利用率信息。 通过将该配置文件与Prometheus Server的启动命令关联,即可启动Prometheus Server并开始收集和存储监控指标数据。然后,我们可以使用Prometheus的查询语言PromQL来查询和分析这些数据,并可以配置告警规则,实现实时告警功能。 综上所述,Kubernetes提供了多种监控和日志相关的工具和机制,可以满足我们在容器编排中的监控和故障排查需求。同时,第三方工具如Prometheus也可以帮助我们实现更复杂的监控和告警功能。 # 6. 部署一个分布式应用 在本章中,我们将通过一个实际的案例来演示如何使用Kubernetes来部署一个分布式应用。我们将会详细介绍架构设计、容器编排方案、创建Kubernetes配置文件和部署脚本、部署和管理应用、应用监控和故障处理等内容。 #### 6.1 架构设计和容器编排方案 我们将以一个Web应用为例,该应用由前端、后端和数据库组成,分别运行在不同的容器中。我们使用Kubernetes进行容器编排,保证各个组件的运行和扩展。 #### 6.2 创建Kubernetes配置文件和部署脚本 我们将为前端、后端和数据库分别创建Deployment和Service的配置文件,以及Ingress路由配置,同时编写部署脚本用于自动化部署。 ```yaml // 示例Deployment配置文件 apiVersion: apps/v1 kind: Deployment metadata: name: frontend spec: replicas: 3 selector: matchLabels: app: frontend template: metadata: labels: app: frontend spec: containers: - name: frontend image: your-frontend-image ports: - containerPort: 80 ``` ```yaml // 示例Service配置文件 apiVersion: v1 kind: Service metadata: name: frontend-svc spec: selector: app: frontend ports: - protocol: TCP port: 80 targetPort: 80 ``` ```yaml // 示例Ingress配置文件 apiVersion: networking.k8s.io/v1 kind: Ingress metadata: name: frontend-ingress spec: rules: - host: frontend.yourdomain.com http: paths: - path: / pathType: Prefix backend: service: name: frontend-svc port: number: 80 ``` #### 6.3 部署和管理应用 通过kubectl命令或CI/CD工具执行部署脚本,将应用部署到Kubernetes集群中,并可以使用kubectl工具进行应用的管理和扩展。 ```bash # 执行部署脚本 kubectl apply -f frontend-deployment.yaml kubectl apply -f frontend-service.yaml kubectl apply -f frontend-ingress.yaml ``` #### 6.4 应用监控和故障处理 使用Kubernetes Dashboard或者Prometheus等监控工具,对应用的运行状态进行监控,并通过日志和指标分析,进行故障处理和优化调整。 通过这个实战案例,我们可以深入了解如何在实际场景中使用Kubernetes进行容器编排,并学习到如何进行应用的部署、管理、监控和故障处理。
corwn 最低0.47元/天 解锁专栏
买1年送3月
点击查看下一篇
profit 百万级 高质量VIP文章无限畅学
profit 千万级 优质资源任意下载
profit C知道 免费提问 ( 生成式Al产品 )

相关推荐

吴雄辉

高级架构师
10年武汉大学硕士,操作系统领域资深技术专家,职业生涯早期在一家知名互联网公司,担任操作系统工程师的职位负责操作系统的设计、优化和维护工作;后加入了一家全球知名的科技巨头,担任高级操作系统架构师的职位,负责设计和开发新一代操作系统;如今为一名独立顾问,为多家公司提供操作系统方面的咨询服务。
专栏简介
《Linux操作系统学习路径(全面涵盖)》是一本全面介绍Linux操作系统的专栏。从基础入门开始,包含了文件系统结构与命令行操作、用户和权限管理、网络配置和管理等主题。同时,还提供了关于Shell脚本编程、软件包管理、系统监控与性能调优、系统安全基础、高级网络管理与服务配置等深入内容。此外,专栏还深入讲解了虚拟化技术、高级Shell编程、内核管理、集群搭建与管理以及文件系统管理等进阶主题,以及日志管理与分析、性能监控与调优工具、容器编排与Kubernetes实践等更为专业的主题。最后,专栏也涵盖了系统备份与灾难恢复的技术。通过本专栏,读者可以全面了解Linux操作系统的各个方面,并且掌握相应的技术和实践。
最低0.47元/天 解锁专栏
买1年送3月
百万级 高质量VIP文章无限畅学
千万级 优质资源任意下载
C知道 免费提问 ( 生成式Al产品 )

最新推荐

【文献综述构建指南】:如何打造有深度的文献框架

![【文献综述构建指南】:如何打造有深度的文献框架](https://p3-sdbk2-media.byteimg.com/tos-cn-i-xv4ileqgde/20e97e3ba3ae48539c1eab5e0f3fcf60~tplv-xv4ileqgde-image.image) # 摘要 文献综述是学术研究中不可或缺的环节,其目的在于全面回顾和分析已有的研究成果,以构建知识体系和指导未来研究方向。本文系统地探讨了文献综述的基本概念、重要性、研究方法、组织结构、撰写技巧以及呈现与可视化技巧。详细介绍了文献搜索策略、筛选与评估标准、整合与分析方法,并深入阐述了撰写前的准备工作、段落构建技

MapSource高级功能探索:效率提升的七大秘密武器

![MapSource](https://imagenes.eltiempo.com/files/image_1200_600/uploads/2020/02/08/5e3f652fe409d.jpeg) # 摘要 本文对MapSource软件的高级功能进行了全面介绍,详细阐述了数据导入导出的技术细节、地图编辑定制工具的应用、空间分析和路径规划的能力,以及软件自动化和扩展性的实现。在数据管理方面,本文探讨了高效数据批量导入导出的技巧、数据格式转换技术及清洗整合策略。针对地图编辑与定制,本文分析了图层管理和标注技术,以及专题地图创建的应用价值。空间分析和路径规划章节着重介绍了空间关系分析、地形

Profinet通讯协议基础:编码器1500通讯设置指南

![1500与编码器Profinet通讯文档](https://profinetuniversity.com/wp-content/uploads/2018/05/profinet_i-device.jpg) # 摘要 Profinet通讯协议作为工业自动化领域的重要技术,促进了编码器和其它工业设备的集成与通讯。本文首先概述了Profinet通讯协议和编码器的工作原理,随后详细介绍了Profinet的数据交换机制、网络架构部署、通讯参数设置以及安全机制。接着,文章探讨了编码器的集成、配置、通讯案例分析和性能优化。最后,本文展望了Profinet通讯协议的实时通讯优化和工业物联网融合,以及编码

【5个步骤实现Allegro到CAM350的无缝转换】:确保无瑕疵Gerber文件传输

![【5个步骤实现Allegro到CAM350的无缝转换】:确保无瑕疵Gerber文件传输](https://img-blog.csdnimg.cn/64b75e608e73416db8bd8acbaa551c64.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3dzcV82NjY=,size_16,color_FFFFFF,t_70) # 摘要 本文详细介绍了从Allegro到CAM350的PCB设计转换流程,首先概述了Allegr

PyCharm高效调试术:三分钟定位代码中的bug

![PyCharm高效调试术:三分钟定位代码中的bug](https://www.jetbrains.com/help/img/idea/2018.2/py_debugging1_step_over.png) # 摘要 PyCharm作为一种流行的集成开发环境,其强大的调试功能是提高开发效率的关键。本文系统地介绍了PyCharm的调试功能,从基础调试环境的介绍到调试界面布局、断点管理、变量监控以及代码调试技巧等方面进行了详细阐述。通过分析实际代码和多线程程序的调试案例,本文进一步探讨了PyCharm在复杂调试场景下的应用,包括异常处理、远程调试和性能分析。最后,文章深入讨论了自动化测试与调试

【编程高手必备】:整数、S5Time与Time精确转换的终极秘籍

![【编程高手必备】:整数、S5Time与Time精确转换的终极秘籍](https://img-blog.csdnimg.cn/9c008c81a3f84d16b56014c5987566ae.png) # 摘要 本文深入探讨了整数与时间类型(S5Time和Time)转换的基础知识、理论原理和实际实现技巧。首先介绍了整数、S5Time和Time在计算机系统中的表示方法,阐述了它们之间的数学关系及转换算法。随后,文章进入实践篇,展示了不同编程语言中整数与时间类型的转换实现,并提供了精确转换和时间校准技术的实例。最后,文章探讨了转换过程中的高级计算、优化方法和错误处理策略,并通过案例研究,展示了

【PyQt5布局专家】:网格、边框和水平布局全掌握

# 摘要 PyQt5是一个功能强大的跨平台GUI工具包,本论文全面探讨了PyQt5中界面布局的设计与优化技巧。从基础的网格布局到边框布局,再到水平和垂直布局,本文详细阐述了各种布局的实现方法、高级技巧、设计理念和性能优化策略。通过对不同布局组件如QGridLayout、QHBoxLayout、QVBoxLayout以及QStackedLayout的深入分析,本文提供了响应式界面设计、复杂用户界面创建及调试的实战演练,并最终深入探讨了跨平台布局设计的最佳实践。本论文旨在帮助开发者熟练掌握PyQt5布局管理器的使用,提升界面设计的专业性和用户体验。 # 关键字 PyQt5;界面布局;网格布局;边

【音响定制黄金法则】:专家教你如何调校漫步者R1000TC北美版以获得最佳音质

# 摘要 本论文全面探讨了音响系统的原理、定制基础以及优化技术。首先,概述了音响系统的基本工作原理,为深入理解定制化需求提供了理论基础。接着,对漫步者R1000TC北美版硬件进行了详尽解析,展示了该款音响的硬件组成及特点。进一步地,结合声音校准理论,深入讨论了校准过程中的实践方法和重要参数。在此基础上,探讨了音质调整与优化的技术手段,以达到提高声音表现的目标。最后,介绍了高级调校技巧和个性化定制方法,为用户提供更加个性化的音响体验。本文旨在为音响爱好者和专业人士提供系统性的知识和实用的调校指导。 # 关键字 音响系统原理;硬件解析;声音校准;音质优化;调校技巧;个性化定制 参考资源链接:[

【微服务架构转型】:一步到位,从单体到微服务的完整指南

![【微服务架构转型】:一步到位,从单体到微服务的完整指南](https://sunteco.vn/wp-content/uploads/2023/06/Microservices-la-gi-Ung-dung-cua-kien-truc-nay-nhu-the-nao-1024x538.png) # 摘要 微服务架构是一种现代化的软件开发范式,它强调将应用拆分成一系列小的、独立的服务,这些服务通过轻量级的通信机制协同工作。本文首先介绍了微服务架构的理论基础和设计原则,包括组件设计、通信机制和持续集成与部署。随后,文章分析了实际案例,探讨了从单体架构迁移到微服务架构的策略和数据一致性问题。此

金蝶K3凭证接口权限管理与控制:细致设置提高安全性

![金蝶K3凭证接口参考手册](https://img-blog.csdnimg.cn/img_convert/3856bbadafdae0a9c8d03fba52ba0682.png) # 摘要 金蝶K3凭证接口权限管理是确保企业财务信息安全的核心组成部分。本文综述了金蝶K3凭证接口权限管理的理论基础和实践操作,详细分析了权限管理的概念及其在系统中的重要性、凭证接口的工作原理以及管理策略和方法。通过探讨权限设置的具体步骤、控制技巧以及审计与监控手段,本文进一步阐述了如何提升金蝶K3凭证接口权限管理的安全性,并识别与分析潜在风险。本文还涉及了技术选型与架构设计、开发配置实践、测试和部署策略,