深度学习:克服神经网络局限性的策略

需积分: 10 2 下载量 127 浏览量 更新于2024-07-19 收藏 2.74MB PDF 举报
"这篇资源详细介绍了人工智能领域中的深度神经网络(Deep Neural Networks),由Dong Xu在EECS Department、C.S. Bond Life Sciences Center和Informatics Institute的讲座中提出。内容涵盖深度架构的动机、输入表示、softmax函数、激活函数如maxout和ReLU,以及dropout技术。同时,讨论了神经网络的局限性,包括随机初始化和密集连接导致的高昂成本、随着隐藏层增加训练难度增大、梯度消失问题、局部最优陷阱等。此外,还提到了生物启发的深度学习概念,指出人脑的结构与深度神经网络有相似之处。" 正文: 深度神经网络(Deep Neural Networks,简称DNN)是人工智能领域的重要组成部分,它模拟了人脑神经元的工作方式,通过多层非线性变换对复杂数据进行建模和处理。DNN的核心在于其深度,即包含多个隐藏层,这使得网络能够学习更高级别的抽象特征。 **深度架构的动机** 深度架构的出现是为了处理高维度和复杂的输入数据,例如图像、语音和文本。每一层神经网络可以捕获不同级别的特征,底层捕获基本特征,高层则捕获更抽象的概念。这种逐层学习有助于提高模型的泛化能力。 **输入表示** 输入表示是深度学习的第一步,如何将原始数据转化为神经网络可以理解的形式至关重要。这可能包括特征提取、预处理和标准化等步骤,确保输入数据适合网络的训练。 **softmax与分类** softmax函数常用于多分类问题的输出层,它将神经网络的最后一层输出转换为概率分布,确保所有类别的概率之和为1,从而便于选择最可能的类别。 **激活函数** 激活函数如maxout和ReLU(Rectified Linear Unit)是神经网络非线性的来源。ReLU函数在正区间的线性特性解决了传统Sigmoid和Tanh函数的梯度消失问题,提高了网络的训练效率。Maxout则是ReLU的扩展,通过取多个线性单元的最大值来增加网络的表达能力。 **dropout技术** dropout是一种正则化方法,它在训练过程中随机关闭一部分神经元,防止过拟合并促进模型的泛化性能。通过这种方式,每个神经元被迫学习更通用的特征,而不是依赖于特定的神经元组合。 **神经网络的局限性** 尽管深度神经网络表现出色,但它们也存在一些挑战。随机初始化和密集连接可能导致训练成本高昂,因为每个神经元都可以看作一个逻辑回归模型,需要大量计算资源。随着隐藏层数的增加,梯度下降法在反向传播时遇到梯度消失问题,使得深层节点的参数调整困难。此外,由于目标函数通常是非凸的,网络可能会陷入局部最优或鞍点,训练过程可能停滞不前。 **生物启发** 深度学习的灵感来源于人脑的神经生物学结构,大脑的皮层层次结构与DNN的多层设计相呼应,每一层处理不同的认知任务。这为深度学习提供了一个生物可行性的解释,并推动了更多基于生物灵感的网络结构和优化算法的研究。 总结来说,深度神经网络是现代人工智能的关键技术,它通过多层次的学习来处理复杂的数据。然而,克服训练成本、梯度消失和局部最优等问题,以及进一步理解生物神经网络的工作机制,仍然是深度学习研究的重要方向。
2018-03-27 上传
Over the past decade, Deep Neural Networks (DNNs) have become very popular models for problems involving massive amounts of data. The most successful DNNs tend to be characterized by several layers of parametrized linear and nonlinear transformations, such that the model contains an immense number of parameters. Empirically, we can see that networks structured according to these ideals perform well in practice. However, at this point we do not have a full rigorous understanding of why DNNs work so well, and how exactly to construct neural networks that perform well for a specific problem. This book is meant as a first step towards forming this rigorous understanding: we develop a generic mathematical framework for representing neural networks and demonstrate how this framework can be used to represent specific neural network architectures. We hope that this framework will serve as a common mathematical language for theoretical neural network researchers—something which currently does not exist—and spur further work into the analytical properties of DNNs. We begin in Chap. 1 by providing a brief history of neural networks and exploring mathematical contributions to them. We note what we can rigorously explain about DNNs, but we will see that these results are not of a generic nature. Another topic that we investigate is current neural network representations: we see that most approaches to describing DNNs rely upon decomposing the parameters and inputs into scalars, as opposed to referencing their underlying vector spaces, which adds a level of awkwardness into their analysis. On the other hand, the framework that we will develop strictly operates over these vector spaces, affording a more natural mathematical description of DNNs once the objects that we use are well defined and understood.